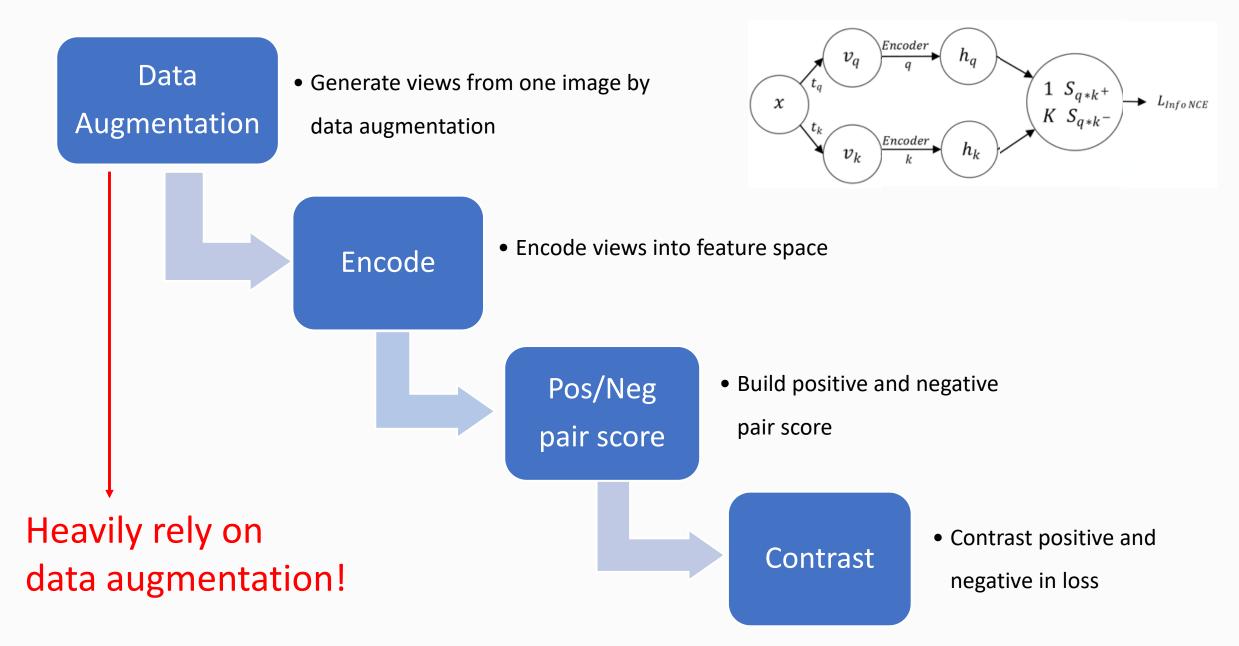
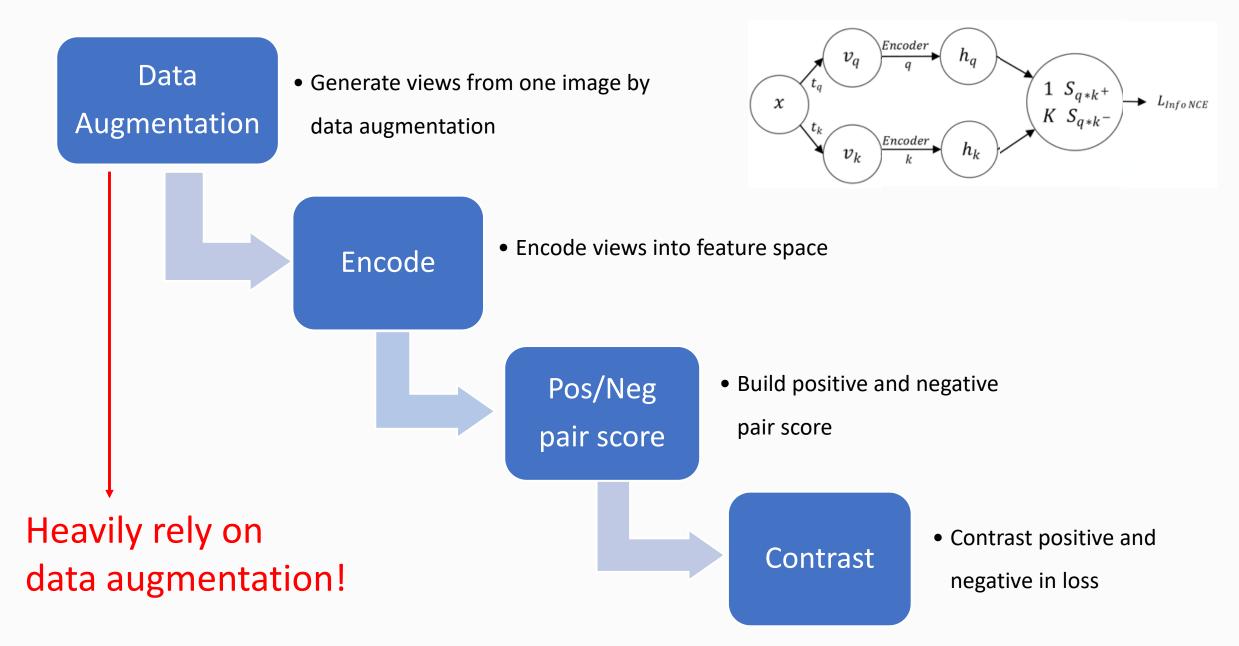
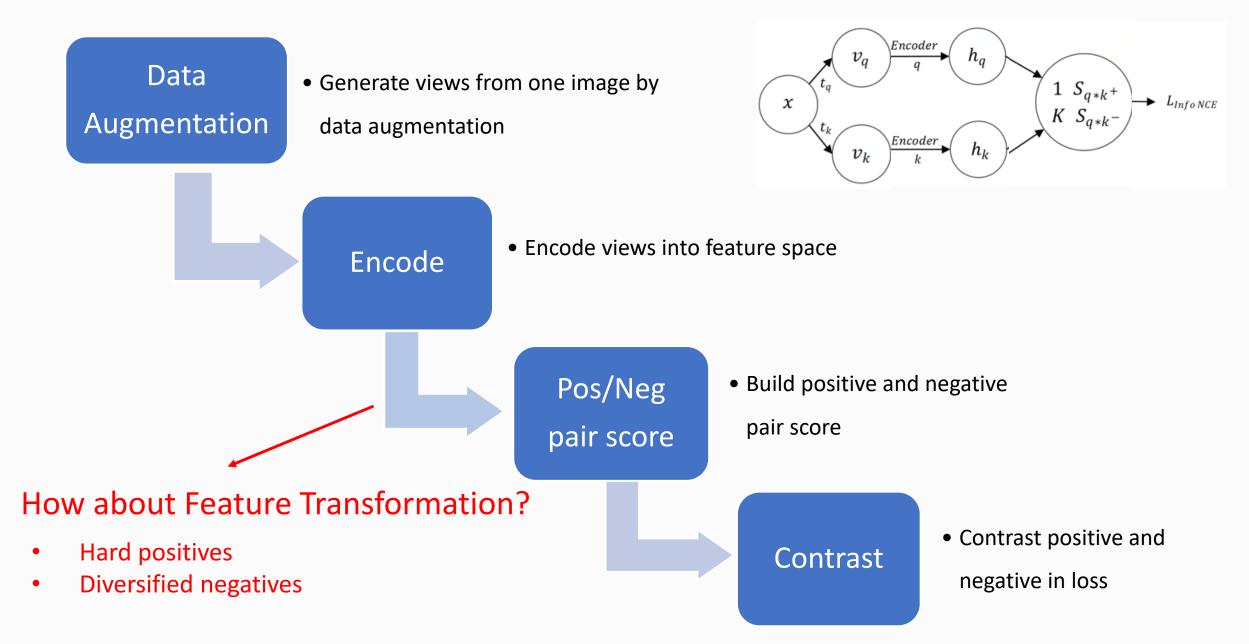


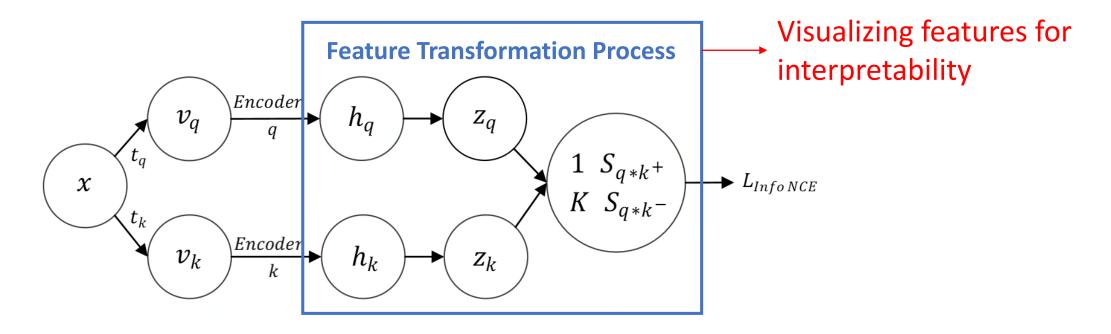
Improving Contrastive Learning by Visualizing Feature Transformation

<u>Rui Zhu</u>*, Bingchen Zhao*, Jingen Liu⁺, Zhenglong Sun, Chang Wen Chen






Pipeline of Contrastive Learning

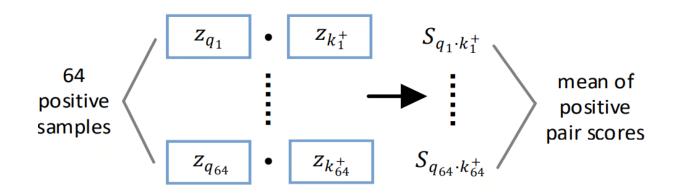

Pipeline of Contrastive Learning

Pipeline of Contrastive Learning

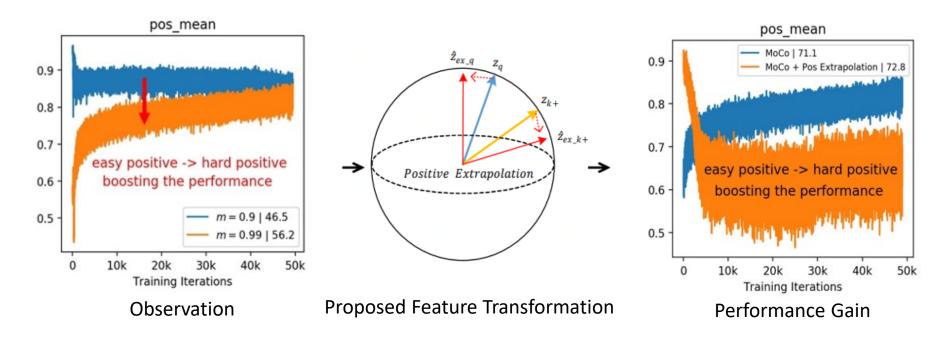
Feature Transformation

Unlike data augmentation, we propose Feature Transformation:

- Directly operate on feature embedding.
- Not based on human intuitive.
- Manipulate positive or negative pairs for different purpose.


Visualizing Features or Pos/Neg Scores?

Challenges of visualizing features:

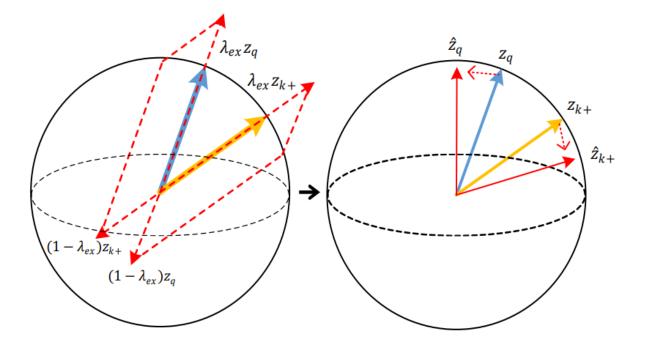

- Costly to visualize high-dimensional features.
- Needs large storage.

> Visualizing the statistics of pair score distribution is better:

- Positive/Negative Pair score \rightarrow the minimum unit of contrastive loss.
- Offline \rightarrow no impact on training speed.
- Negligible computation \rightarrow being feasible for large scale dataset.

From Visualization to Feature Transformation

 \succ Observation: hard positive \rightarrow higher transfer accuracy.


- Feature Transformation : hard positives for more view invariance.
- > Explain the impact of model parameter by visualization tools.
- > Trace back the training process by visualization tools.

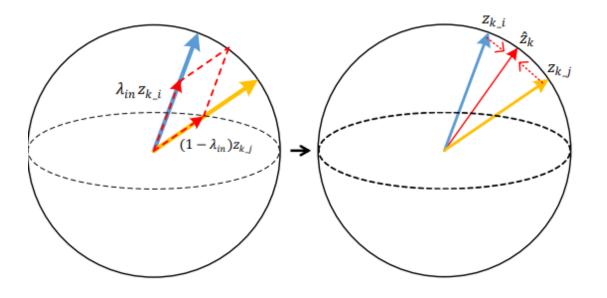
Contributions

Propose Feature Transformation to enhance contrastive learning:

- Extrapolate positive pairs \rightarrow hard positives \rightarrow to learn view invariance for model.
- Interpolate negative samples \rightarrow diversified negatives \rightarrow to learn discriminative representations
- \succ Design a practical visualization tool \rightarrow to trace back analyze training process.
- > Empirically analyze the efficacy of Feature Transformation.
- Extensive experiments and good results on down-stream tasks.

Feature Transformation: Positive Extrapolation

Increase view variance of positive pair:


- Extrapolation pushes away positive pair
- A minor direction change to convey a larger view variance
- Transfer easy positives to hard positives.

What if the positive interpolation?

- Obvious performance drops
- The view variance of positive pairs \downarrow

Method	α_{ex}	pos interpolation/extrapolation
МоСо	0.2	69.1 / 71.6
(baseline: 71.1)	2.0	67.4 / 72.8

Feature Transformation: Negative Interpolation

Increase the diversity of negative examples:

- Randomly interpolating two features in queue.
- Contrast with more new negatives in each training step.
- Original queue → discrete distribution of negatives.
- Fill in the incomplete distribution, leading to a more discriminative model.

Extending queue or Negative Feature Transformation?

- Original queue (even doubled) << Negative FT queue.
- Negative FT queue + Original queue ≈ Negative FT queue.
- Negative FT provides sufficient diversified negatives.

Method	α_{in}	Z_n	queue size	Acc
moco+ original queue	-	Z_{neg}	K	71.10
moco+ original queue	-	Z_{neg}	2K	71.40
moco+ Neg FT queue	1.6	\hat{Z}_{neg}	K	74.64
moco+ Neg FT+original	1.6	\tilde{Z}_{neg}	2K	74.73

Discussion: When to add Feature transformation?

Starting Feature Transformation in the various training stage:

- Consistently boosts the accuracy.
- Starting earlier improves more.
- Providing hard positives when inserted.
- Bringing a greater gradient for training.
- Plug-and-play

	pos_mean	l2_norm	l2_norm
0.9 -		+ 10	3.0
0.8 -		25	25
0.7 -	and the second sec	2.0	2.0
0.6 -		1.0	1.0
0.5 -		0.0	0.0
0.4 -		80 7	
	0 20 40 60 80 100 Training Epochs	0 10 20 30 40 50 60 0 20 30 ⁴⁰ 50 60 0 70 ⁴⁰ 50 ⁰⁰	$ \frac{10}{20} \frac{20}{30} \frac{30}{40} \frac{40}{50} \frac{50}{60} \frac{20}{10} \frac{20}{10} \frac{100}{100} 100$

Mean of positive scores

Baseline MoCo gradient landscape

Adding FT in 50th epoch

FT begin epoch	0	2	30	50	80	-
Res18 acc (%)	62.6	63.3	62.9	61.8	59.2	56.2
Res50 acc (%)	76.9	76.4	75.9	74.0	72.2	71.1

Discussion: Could the gains of FT vanish if training longer?

Method	Pre-train Epochs	Acc %
$MoCo-V2 \rightarrow MoCo-V2 + FT$	200	75.6 → 78.3 <i>,</i> 2.7%个
(on ImageNet-100)	500	80.7→81.5, 0.8%个

- Longer training weakens the improvement from Feature Transformation.
- More epochs \rightarrow contrast more positive and negative pairs.
- Fast convergence by providing diversified and discriminative pairs.

Ablation studies on ImageNet-100:

Method	MoCov1	MoCov2	simCLR	Infomin	ı swav	SimSiam
baseline*	71.10	75.61	74.32	81.9	82.1	77.1
+pos FT	72.80	76.22	75.80	-	-	77.8
+neg FT	74.64	77.12	76.71	-	-	
+both	76.87	78.33	78.25	83.2	83.2	
$+both_{dim}$	77.21	79.21	78.81	-	-	

- Positive and negative Feature Transformation are complementary.
- Generic and robust for various contrastive models.
- Boosts the MoCo-V1, MoCo-V2 and SIMCLR.

Results on ImageNet-1K and Transfer to Fine-grained Dataset:

pre-train	IN-1k	t inat-18	CUB200	FGVC-aircraft
supervised	76.1	66.1	81.9*	82.6*
mocov1[14] mocov1+ours	60.6 61.9	65.6 67.3	82.8* 83.2	83.5* 84.0
mocov2[7] mocov2+ours mocov2+MoCHi[20] mocov2+UnMix[38]	69.6 68.0	66.8* 67.7 - -	82.9* 83.1 -	83.6* 84.1 -

- Improves MoCo-V1 and MoCo-V2 by 1.3% and 2.1% on Imagenet-1K.
- Larger performance gain than mixup based methods, e.g., UnMix[1] and MoCHi[2] respectively.
- Better transfer performance on iNaturalist2018.
- Consistent improvement on CUB-200 and FGVC-aircraft.

Shen, Z., Liu, Z., Liu, Z., Savvides, M., Darrell, T., & Xing, E. Un-mix: Rethinking image mixtures for unsupervised visual representation learning. arXiv:2003.05438.
Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel, P., & Larlus, D. Hard negative mixing for contrastive learning. NeurIPS 2020.

Transfer Performance on Object Detection Dataset:

ana tasia	IN-1k	Faster	· [35] R5	0-C4 VOC		Mask R	-CNN [1	15] R50- (C4 COCC)
pre-train	Top-1	AP	AP_{50}	AP_{75}	AP^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	$ AP^{mk}$	AP_{50}^{mk}	$\operatorname{AP_{75}^{mk}}$
random init*	-	33.8	60.2	33.1	26.4	44.0	27.8	29.3	46.9	30.8
supervised*	76.1	53.5	81.3	58.8	38.2	58.2	41.2	33.3	54.7	35.2
infomin*	70.1	57.6	82.7	64.6	39.0	58.5	42.0	34.1	55.2	36.3
mocoV1[14]	60.6	55.9	81.5	62.6	38.5	58.3	41.6	33.6	54.8	35.6
mocoV1+ours	61.9	56.1	82.0	62.0	39.0	58.7	42.1	34.1	55.1	36.0
mocoV2[7]	67.5	57.0	82.4	63.6	39.0	58.6	41.9	34.2	55.4	36.2
mocoV2+ours	69.6	58.1	83.3	65.1	39.5	59.2	42.1	34.6	55.6	36.5
mocoV2+mochi[20]	68.0	57.1	82.7	64.1	39.4	59.0	42.7	34.5	55.7	36.7
DetCo[53]	68.6	57.8	82.6	64.2	39.4	59.2	42.3	34.4	55.7	36.6
InsLoc[55]	-	57.9	82.9	65.3	39.5	59.1	42.7	34.5	56.0	36.8

- Strongly improves the transfer accuracy on PASCAL VOC and MSCOCO.
- Less task-biased and generic:

Beats some detection-oriented methods (DetCo[1] and InsLoc[2]).

Thanks for Listening!

Rui Zhu

The Chinese University of Hong Kong, Shenzhen

JD AI Research, Beijing

Bingchen Zhao

Tongji University, Shanghai Jingen Liu

JD AI Research, Mountain View

Zhenglong Sun

The Chinese University of Hong Kong, Shenzhen

Chang Wen Chen

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Codes at Github!

https://github.com/DTennant/CL-Visualizing-Feature-Transformation