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How about Feature Transformation?
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Unlike data augmentation, we propose Feature Transformation:

• Directly operate on feature embedding.

Feature Transformation 

Feature Transformation Process
Visualizing features for
interpretability

• Not based on human intuitive.

• Manipulate positive or negative pairs for different purpose.



Visualizing Features or Pos/Neg Scores?

 Visualizing the statistics of pair score distribution is better:

• Costly to visualize high-dimensional features.

• Needs large storage.

• Positive/Negative Pair score → the minimum unit of contrastive loss.

• Offline → no impact on training speed.

• Negligible computation → being feasible for large scale dataset.

 Challenges of visualizing features:



From Visualization to Feature Transformation

Observation Proposed Feature Transformation Performance Gain

 Observation: hard positive → higher transfer accuracy.

 Feature Transformation : hard positives for more view invariance.

 Explain the impact of model parameter by visualization tools.

 Trace back the training process by visualization tools.



Contributions

 Propose Feature Transformation to enhance contrastive learning:

• Extrapolate positive pairs → hard positives → to learn view invariance for model.

• Interpolate negative samples → diversified negatives → to learn discriminative representations

 Design a practical visualization tool → to trace back analyze training process.

 Empirically analyze the efficacy of Feature Transformation.

 Extensive experiments and good results on down-stream tasks. 



Feature Transformation: Positive Extrapolation 

Increase view variance of positive pair:

• Extrapolation pushes away positive pair 

• A minor direction change to convey a larger view variance

• Transfer easy positives to hard positives. 

What if the positive interpolation?

• Obvious performance drops 

• The view variance of positive pairs ↓ 



Feature Transformation: Negative Interpolation 

Increase the diversity of negative examples:

• Randomly interpolating two features in queue. 

• Contrast with more new negatives in each training step.

• Original queue → discrete distribution of negatives.

• Fill in the incomplete distribution, leading to a more 

discriminative model.

Extending queue or Negative Feature Transformation?

• Original queue (even doubled) <<  Negative FT queue.

• Negative FT queue + Original queue ≈ Negative FT queue. 

• Negative FT provides sufficient diversified negatives.



Discussion: When to add Feature transformation?

Starting Feature Transformation in the various training stage: 

Mean of positive scores Baseline MoCo gradient landscape Adding FT in 50th epoch

• Consistently boosts the accuracy.

• Starting earlier improves more.

• Providing hard positives when inserted. 

• Bringing a greater gradient for training.

• Plug-and-play 



Discussion: Could the gains of FT vanish if training longer?

• Longer training weakens the improvement from Feature Transformation. 

• More epochs → contrast more positive and negative pairs. 

• Fast convergence by providing diversified and discriminative pairs.

Method Pre-train Epochs Acc %

MoCo-V2 → MoCo-V2 + FT 200 75.6  → 78.3, 2.7%↑

(on ImageNet-100) 500 80.7 → 81.5,  0.8%↑



Ablation studies on ImageNet-100:

• Positive and negative Feature Transformation are complementary.

• Generic and robust for various contrastive models. 

• Boosts the MoCo-V1, MoCo-V2 and SIMCLR. 



Results on ImageNet-1K and Transfer to Fine-grained Dataset:

• Improves MoCo-V1 and MoCo-V2 by 1.3% and 2.1% on Imagenet-1K.

[1] Shen, Z., Liu, Z., Liu, Z., Savvides, M., Darrell, T., & Xing, E. Un-mix: Rethinking image mixtures for unsupervised visual representation learning. arXiv:2003.05438.
[2] Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel, P., & Larlus, D. Hard negative mixing for contrastive learning. NeurIPS 2020.

• Larger performance gain than mixup based methods, e.g., UnMix[1] and MoCHi[2] respectively.

• Better transfer performance on iNaturalist2018. 

• Consistent improvement on CUB-200 and FGVC-aircraft.



Transfer Performance on Object Detection Dataset:

• Strongly improves the transfer accuracy on PASCAL VOC and MSCOCO.

[1] Xie, E., Ding, J., Wang, W., Zhan, X., Xu, H., Li, Z., & Luo, P. Detco: Unsupervised contrastive learning for object detection. ICCV 2021.
[2] Yang, C., Wu, Z., Zhou, B., & Lin, S. Instance localization for self-supervised detection pretraining. CVPR 2021.

• Less task-biased and generic:

Beats some detection-oriented methods (DetCo[1] and InsLoc[2]).
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https://github.com/DTennant/CL-Visualizing-Feature-Transformation

Codes at Github!

https://github.com/DTennant/CL-Visualizing-Feature-Transformation

