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Abstract

The current research focus on Content-Based Video Re-
trieval requires higher-level video representation describ-
ing the long-range semantic dependencies of relevant in-
cidents, events, etc. However, existing methods commonly
process the frames of a video as individual images or short
clips, making the modeling of long-range semantic depen-
dencies difficult. In this paper, we propose TCA (Tem-
poral Context Aggregation for Video Retrieval), a video
representation learning framework that incorporates long-
range temporal information between frame-level features
using the self-attention mechanism. To train it on video re-
trieval datasets, we propose a supervised contrastive learn-
ing method that performs automatic hard negative min-
ing and utilizes the memory bank mechanism to increase
the capacity of negative samples. Extensive experiments
are conducted on multiple video retrieval tasks, such as
CC WEB VIDEO, FIVR-200K, and EVVE. The proposed
method shows a significant performance advantage (∼ 17%
mAP on FIVR-200K) over state-of-the-art methods with
video-level features, and deliver competitive results with
22x faster inference time comparing with frame-level fea-
tures.

1. Introduction

We address the task of Content-Based Video Retrieval.
The research focus on Content-Based Video Retrieval has
shifted from Near-Duplicate Video Retrieval (NDVR) [61,
25] to Fine-grained Incident Video Retrieval [30], Event-
based Video Retrieval [45], etc. Different from NDVR,
these tasks are more challenging in terms that they require
higher-level representation describing the long-range se-
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Figure 1: Example query describing the crash of a hawker
hunter at Shoreham airport and its challenging distractors
retrieved from the FIVR-200K [30] dataset. As the scene
of the aircraft in the sky takes the majority of the video,
the vital information about the crash (with fewer frames)
is covered up, thus the mistakenly retrieved videos share
similar scenes, but describe totally different events.

mantic dependencies of relevant incidents, events, etc.
The central task of Contend-Based Video Retrieval is

to predict the similarity between video pairs. Current ap-
proaches mainly follow two schemes: to compute the sim-
ilarity using video-level representations (first scheme) or
frame-level representations (second scheme). For methods
using video-level representations, early studies typically
employ code books [6, 32, 35] or hashing functions [51, 52]
to form video representations, while later approach (Deep
Metric Learning [33]) is introduced to generate video repre-
sentations by aggregating the pre-extracted frame-level rep-
resentations. In contrast, the approaches following the sec-
ond scheme typically extract frame-level representations to
compute frame-to-frame similarities, which are then used
to obtain video-level similarities [9, 36, 31, 54]. With more
elaborate similarity measurements, they typically outper-
form those methods with the first scheme.

For both schemes, the frames of a video are commonly
processed as individual images or short clips, making the



Figure 2: Video Retrieval performance comparison on
ISVR task of FIVR [30] in terms of mAP, inference time,
and computational cost of the model (ISVR is the most
complete and hard task of FIVR). The proposed approach
achieves the best trade-off between performance and ef-
ficiency with both video-level and frame-level features
against state-of-the-art methods. (Best viewed in color)

modeling of long-range semantic dependencies difficult. As
the visual scene of videos can be redundant (such as scenery
shots or B-rolls), potentially unnecessary visual data may
dominate the video representation, and mislead the model
to retrieve negative samples sharing similar scenes, as the
example shown in Fig. 1. Motivated by the effectiveness
of the self-attention mechanism in capturing long-range de-
pendencies [57], we propose to incorporate temporal infor-
mation between frame-level features (i.e., temporal context
aggregation) using the self-attention mechanism to better
model the long-range semantic dependencies, helping the
model focus on more informative frames, thus obtaining
more relevant and robust features.

To supervise the optimization of video retrieval mod-
els, current state-of-the-art methods [33, 31] commonly per-
form pair-wise optimization with triplet loss [60]. However,
the relation that triplets can cover is limited, and the perfor-
mance of triplet loss is highly subject to the time-consuming
hard-negative sampling process [50]. Inspired by the recent
success of contrastive learning on self-supervised learn-
ing [17, 7] and the nature of video retrieval datasets that
rich negative samples are readily available, we propose a
supervised contrastive learning method for video retrieval.
With the help of a shared memory bank, large quantities of
negative samples are utilized efficiently with no need for
manual hard-negative sampling. Furthermore, by conduct-
ing gradient analysis, we show that our proposed method
has the property of automatic hard-negative mining which
could greatly improve the final performance.

Extensive experiments are conducted on multi video re-

trieval datasets, such as CC WEB VIDEO [61], FIVR [30],
and EVVE [45]. In comparison with previous methods, as
shown in Fig. 2, the proposed method shows a significant
performance advantage (e.g., ∼ 17% mAP on FIVR-200K)
over state-of-the-art methods with video-level features, and
deliver competitive results with 22x faster inference time
comparing with methods using frame-level features.

2. Related Work
Frame Feature Representation. Early approaches em-

ployed handcrafted features including the Scale-Invariant
Feature Transform (SIFT) features [26, 38, 61], the
Speeded-Up Robust Features (SURF) [5, 9], Colour His-
tograms in HSV space [16, 27, 52], and Local Binary Pat-
terns (LBP) [66, 48, 62], etc. Recently, Deep Convolu-
tional Neural Networks (CNNs) have proved to be versa-
tile representation tools in recent approaches. The applica-
tion of Maximum Activation of Convolutions (MAC) and
its variants [44, 68, 43, 56, 67, 46, 14], which extract frame
descriptors from activations of a pre-trained CNN model,
have achieved great success in both fine-grained image re-
trieval and video retrieval tasks [14, 32, 34, 33, 31]. Be-
sides variants of MAC, Sum-Pooled Convolutional features
(SPoC) [3] and Generalized Mean (GeM) [15] pooling are
also considerable counterparts.

Video Feature Aggregation. Typically, the video fea-
ture aggregation paradigm can be divided into two cate-
gories: (1) local feature aggregation models [10, 49, 42, 24]
which are derived from traditional local image feature ag-
gregation models, and (2) sequence models [20, 8, 11, 13,
57, 64] that model the temporal order of the video repre-
sentation. Popular local feature aggregation models include
Bag-of-Words [10, 49], Fisher Vector [42], and Vector of
Locally Aggregated Descriptors (VLAD) [24], of which the
unsupervised learning of a visual code book is required.
The NetVLAD [1] transfers VLAD into a differential ver-
sion, and the clusters are tuned via back-propagation in-
stead of k-means clustering. In terms of the sequence mod-
els, the Long Short-Term Memory (LSTM) [20] and Gated
Recurrent Unit (GRU) [8] are commonly used for video
re-localization and copy detection [13, 22]. Besides, self-
attention mechanism also shows success in video classifica-
tion [59] and object detection [21].

Contrastive Learning. Contrastive learning has become
the common training paradigm of recent self-supervised
learning works [40, 19, 55, 17, 7, 65], in which the positive
and negative sample pairs are constructed with a pretext task
in advance, and the model tries to distinguish the positive
sample from massive randomly sampled negative samples
in a classification manner. The contrastive loss typically
performs better in general than triplet loss for representation
learning [7] which can only handle one positive and nega-
tive at a time. The core of the effectiveness of contrastive



learning is the use of rich negative samples [55], one ap-
proach is to sample them from a shared memory bank [63],
and [17] replaced the bank with a queue and used a moving-
averaged encoder to build a larger and consistent dictionary
on-the-fly.

3. Method
In this section, we first define the problem setting (Sec-

tion 3.1) and describe the frame-level feature extraction step
(Section 3.2). Then, we demonstrate the temporal context
aggregation module (Section 3.3) and the contrastive learn-
ing method based on pair-wise video labels (Section 3.4),
then conduct further analysis on the gradients of the loss
function (Section 3.5). And last, we discuss the similar-
ity measure of video-level and frame-level video descriptors
(Section 3.6).

3.1. Problem Setting

We address the problem of video representation learning
for Near-Duplicate Video Retrieval (NDVR), Fine-grained
Incident Video Retrieval (FIVR), and Event Video Retrieval
(EVR) tasks. In our setting, the dataset is two-split: the core
and distractor. The core subset contains pair-wise labels de-
scribing which two videos are similar (near duplicate, com-
plementary scene, same event, etc.). And the distractor sub-
set contain large quantities of negative samples to make the
retrieval task more challenging.

We only consider the RGB data of the videos. Given
raw pixels (xr ∈ Rm×n×f ), a video is encoded into a se-
quence of frame-level descriptors (xf ∈ Rd×f ) or a com-
pact video-level descriptor (xv ∈ Rd). Take the similar-
ity function as sim(·, ·), the similarity of two video descrip-
tors x1,x2 can be denoted as sim(x1,x2). Given these, our
task is to optimize the embedding function f(·), such that
sim (f (x1) , f (x2)) is maximized if x1 and x2 are similar
videos, and minimized otherwise. The embedding function
f(·) typically takes a video-level descriptor x ∈ Rd and
returns an embedding f(x) ∈ Rk, in which k � d. How-
ever, in our setting, f(·) is a temporal context aggregation
modeling module, thus frame-level descriptors x ∈ Rd×f

are taken as input, and the output can be either aggregated
video-level descriptor (f(x) ∈ Rd) or refined frame-level
descriptors (f(x) ∈ Rd×f ).

3.2. Feature Extraction

According to the results reported in [31] (Table 2), we
select iMAC [14] and modified L3-iMAC [31] (called L3-
iRMAC) as our benchmark frame-level feature extraction
methods. Given a pre-trained CNN network with K con-
volutional layers, K feature mapsMk ∈ Rnk

d×n
k
d×c

k

(k =
1, . . . ,K) are generated, where nkd×nkd is the dimension of
each feature map of the kth layer, and ck is the total number
of channels.
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Figure 3: Feature encoding pipeline. Raw frames are fed
to the feature extractor to extract the frame-level video de-
scriptor x. Then the self-attention mechanism is applied to
perform temporal context aggregation on the input, and gen-
erate refined frame-level descriptors f(x). They can also be
compressed into a video-level descriptor by applying aver-
age pooling and `2-normalization.

For iMAC feature, the maximum value of every channel
of each layer is extracted to generateK feature mapsMk ∈
Rck , as formulated in Eq. 1:

vk(i) = maxMk(·, ·, i), i = 1, 2, . . . , ck , (1)

where vk is a ck-dimensional vector that is derived from
max pooling on each channel of the feature mapMk.

Max pooling with different kernel size and stride are ap-
plied to every channel of different layers to generate K fea-
ture maps Mk ∈ R3×3×ck in the original L3-iMAC fea-
ture. Unlike its setting, we then follow the tradition of R-
MAC [56] to sum the 3× 3 feature maps together, then ap-
ply `2-normalization on each channel to form a feature map
Mk ∈ Rck . This presents a trade-off between the preser-
vation of fine-trained spatial information and low feature
dimensionality (equal to iMAC), we denote this approach
as L3-iRMAC.

For both iMAC and L3-iRMAC, all layer vectors are
concatenated to a single descriptor after extraction, then
PCA is applied to perform whitening and dimensionality
reduction following the common practice [23, 31], finally
`2-normalization is applied on each channel, resulting in a
compact frame-level descriptor x ∈ Rd×f .

3.3. Temporal Context Aggregation
We adopt the Transformer [57] model for temporal con-

text aggregation. Following the setting of [13, 64], only the
encoder structure of the Transformer is used. With the pa-
rameter matrices written asWQ,WK ,WV , the entire video
descriptor x ∈ Rd×f is first encoded into Query Q, Key



K and Value V by three different linear transformations:
Q = x>WQ, K = x>WK and V = x>WV . This is
further calculated by the self-attention layer as:

Attention(Q,K, V ) = softmax
(
QK>√

d

)
V . (2)

The result is then taken to the LayerNorm layer [2] and
Feed Forward Layer [57] to get the output of the Trans-
former encoder, i.e., fTransformer(x) ∈ Rd×f . The multi-head
attention mechanism is also used.

With the help of the self-attention mechanism, Trans-
former is effective at modeling long-term dependencies
within the frame sequence. Although the encoded feature
keeps the same shape as the input, the contextual informa-
tion within a longer range of each frame-level descriptor
is incorporated. Apart from the frame-level descriptor, by
simply averaging the encoded frame-level video descriptors
along the time axis, we can also get the compact video-level
representation f(x) ∈ Rd.

3.4. Contrastive Learning
If we denote wa,wp,w

j
n(j = 1, 2, . . . , N − 1) as the

video-level representation before applying normalization of
the anchor, positive, negative examples, we get the simi-
larity scores by: sp = w>a wp

/
(‖wa‖ ‖wp‖) and sjn =

w>a w
j
n

/(
‖wa‖

∥∥wj
n

∥∥) . Then the InfoNCE [40] loss is
written as:

Lnce = − log
exp (sp/τ)

exp (sp) +
∑N−1

j=1 exp
(
sjn/τ

) , (3)

where τ is a temperature hyper-parameter [63]. To utilize
more negative samples for better performance, we borrow
the idea of the memory bank from [63]. For each batch, we
take one positive pair from the core dataset and randomly
sample n negative samples from the distractors, then the
compact video-level descriptors are generated with a shared
encoder. The negative samples of all batches from all GPUs
(k batches in total) are concatenated together to form the
memory bank. We compare the similarity of the anchor
sample against the positive sample and all negatives in the
memory bank, resulting in 1 sp and N = kn sn. Then
the loss can be calculated in a classification manner. The
momentum mechanism [17] is not adopted as we did not
see any improvement in experiments. Besides the InfoNCE
loss, the recent proposed Circle Loss [53] is also consid-
ered:

Lcircle = − log
exp(γαp(sp −∆p))

exp(γαp(sp −∆p)) +
N−1∑
j=1

exp(γαj
n(sjn −∆n))

(4)
where γ is the scale factor (equivalent with the parame-

ter τ in Eq. 3), and m is the relaxation margin. αp =
[1 +m− sp]+ , α

j
n =

[
sjn +m

]
+
,∆p = 1−m,∆n = m.

Compared with the InfoNCE loss, the Circle loss optimizes
sp and sn separately with adaptive penalty strength and
adds within-class and between-class margins.
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Figure 4: Learning representation with pair-wise labels.
For each batch, we take one positive pair from the core
dataset and randomly sample n negative samples from the
distractors, then the video-level descriptors are generated
with a shared encoder. The negative samples of all batches
and all GPUs are concatenated together to form the mem-
ory bank. We compare the similarity of the anchor against
the positive sample and all negatives in the memory bank,
resulting in 1 sp and kn sn. Then the loss can be calculated
in a classification manner following Eq. 3 and Eq. 4.

3.5. One Step Further on the Gradients
In the recent work of Khosla et al. [28], the proposed

batch contrastive loss is proved to focus on the hard pos-
itives and negatives automatically with the help of feature
normalization by conducting gradient analysis, we further
reveal that this is the common property of Softmax loss and
its variants when combined with feature normalization. For
simplicity, we analyze the gradients of Softmax loss, the
origin of both InfoNCE loss and Circle loss:

Lsoftmax = − log
exp (sp)

exp (sp) +
∑N−1

j=1 exp
(
sjn
) , (5)

the notation is as aforementioned. Here we show that easy
negatives contribute the gradient weakly while hard nega-
tives contribute greater. With the notations declared in Sec-
tion 3.4, we denote the normalized video-level representa-
tion as z∗ = w∗/‖w∗‖ , then the gradients of Eq. 5 with
respect to wa is:

∂Lsoftmax

∂wa
=

∂za
∂wa

· ∂Lsoftmax

∂za

=
1

‖wa‖

(
I− zaz

>
a

)[
(σ(s)p − 1) zp +

N−1∑
j=1

σ(s)jnz
j
n

]

∝

positive︷ ︸︸ ︷
(1− σ(s)p)[(z>a zp)za − zp] +

N−1∑
j=1

σ(s)jn[zjn − (z>a z
j
n)za]︸ ︷︷ ︸

negatives

,

(6)



where σ(s)p = exp (sp)
/[

exp (sp) +
∑N−1

j=1 exp
(
sjn
)]

,

and σ(s)jn = exp
(
sjn
)/[

exp (sp) +
∑N−1

j=1 exp
(
sjn
)]

following the common notation of the softmax function.
For an easy negative, the similarity between it and the an-
chor is close to -1, thus z>a z

j
n ≈ −1, and therefore

σ(s)jn

∥∥∥(zjn − (z>a zjn) za)∥∥∥ = σ(s)jn

√
1−

(
z>a z

j
n

)2 ≈ 0 .

(7)
And for a hard negative, z>a z

j
n ≈ 01, and σ(s)jn is moder-

ate, thus the above equation is greater than 0, and its con-
tribution to the gradient of the loss function is greater. For-
mer research only explained it intuitively that features with
shorter amplitudes often represent categories that are more
difficult to distinguish, and applying feature normalization
would divide harder examples with a smaller value (the am-
plitude), thus getting relatively larger gradients [58], how-
ever, we prove this property for the first time by conduct-
ing gradient analysis. The derivation process of Eq. 3 and
Eq. 4 are alike. Comparing with the commonly used Triplet
loss in video retrieval tasks [33, 31] which requires com-
putationally expensive hard negative mining, the proposed
method based on contrastive learning takes advantage of the
nature of softmax-based loss when combined with feature
normalization to perform hard negative mining automati-
cally, and use the memory bank mechanism to increase the
capacity of negative samples, which greatly improves the
training efficiency and effect.

3.6. Similarity Measure

To save the computation and memory cost, at the train-
ing stage, all feature aggregation models are trained with
the output as `2-normalized video-level descriptors (f(x) ∈
Rd), thus the similarity between video pairs is simply cal-
culated by dot product. Besides, for the sequence aggrega-
tion models, refined frame-level video descriptors (f(x) ∈
Rd×f ) can also be easily extracted before applying aver-
age pooling along the time axis. Following the setting
in [31], at the evaluation stage, we also use chamfer sim-
ilarity to calculate the similarity between two frame-level
video descriptors. Denote the representation of two videos
as x = [x0, x1, . . . , xn−1]>, y = [y0, y1, . . . , ym−1]>,
where xi, yj ∈ Rd, the chamfer similarity between them
is:

simf (x,y) =
1

n

n−1∑
i=0

max
j
xiy
>
j , (8)

and the symmetric version:

simsym(x,y) = (simf (x,y) + simf (y,x))/2 . (9)

1This represents the majority of hard negatives, and if the similarity is
close to 1, it is too hard and may cause the model to collapse, or due to
wrong annotation.

Note that this approach (chamfer similarity) seems to be in-
consistent with the training target (cosine similarity), where
the frame-level video descriptors are averaged into a com-
pact representation and the similarity is calculated with dot
product. However, the similarity calculation process of the
compact video descriptors can be written as:

simcos(x,y) =

(
1

n

n−1∑
i=0

xi

)(
1

m

m−1∑
j=0

yj

)>

=
1

n

n−1∑
i=0

1

m

m−1∑
j=0

xiy
>
j .

(10)

Therefore, given frame-level features, chamfer similarity
averages the maximum value of each row of the video-
video similarity matrix, while cosine similarity averages the
mean value of each row. It is obvious that simcos(x,y) ≤
simf (x,y), therefore, by optimizing the cosine similarity,
we are optimizing the lower-bound of the chamfer similar-
ity. As only the compact video-level feature is required,
both time and space complexity are greatly reduced as co-
sine similarity is much computational efficient.

4. Experiments
4.1. Experiment Setting

We evaluate the proposed approach on three video
retrieval tasks, namely Near-Duplicate Video Retrieval
(NDVR), Fine-grained Incident Video Retrieval (FIVR),
and Event Video Retrieval (EVR). In all cases, we report
the mean Average Precision (mAP).

Training Dataset. We leverage the VCDB [25] dataset
as the training dataset. The core dataset of VCDB has 528
query videos and 6,139 positive pairs, and the distractor
dataset has 100,000 distractor videos, of which we success-
fully downloaded 99,181 of them.

Evaluation Dataset. For models trained on the VCDB
dataset, we test them on the CC WEB VIDEO [61] dataset
for NDVR task, FIVR-200K for FIVR task and EVVE [45]
for EVR task. For a quick comparison of the different vari-
ants, the FIVR-5K dataset as in [31] is also used. The
CC WEB VIDEO dataset contains 24 query videos and
13,129 labeled videos; The FIVR-200K dataset includes
225,960 videos and 100 queries, it consists of three differ-
ent fine-grained video retrieval tasks: (1) Duplicate Scene
Video Retrieval, (2) Complementary Scene Video Retrieval
and (3) Incident Scene Video Retrieval; The EVVE dataset
is designed for the EVR task, it consists of 2,375 videos and
620 queries.

Implementation Details. For feature extraction, we
extract one frame per second for all videos. For all re-
trieval tasks, we extract the frame-level features following
the scheme in Section 3.2. The intermediate features are all
extracted from the output of four residual blocks of ResNet-



Model DSVR CSVR ISVR

NetVLAD 0.513 0.494 0.412
LSTM 0.505 0.483 0.400
GRU 0.515 0.495 0.415
Transformer 0.551 0.532 0.454

(a) Model (mAP on FIVR-5K)

Feature DSVR CSVR ISVR

iMAC 0.547 0.526 0.447
L3-iRMAC 0.570 0.553 0.473

(b) Feature (mAP on FIVR-200K)

Loss τ/γ DSVR CSVR ISVR

InfoNCE 0.07 0.493 0.473 0.394
InfoNCE 1/256 0.566 0.548 0.468
Circle 256 0.570 0.553 0.473

(c) Loss function (mAP on FIVR-200K)

Method Bank Size DSVR CSVR ISVR

triplet - 0.510 0.509 0.455
ours 256 0.605 0.615 0.575
ours 4096 0.609 0.617 0.578
ours 65536 0.611 0.617 0.574

(d) Bank size (mAP on FIVR-5K)

Momentum DSVR CSVR ISVR

0 (bank) 0.609 0.617 0.578
0.1 0.606 0.612 0.569
0.9 0.605 0.611 0.568
0.99 0.602 0.606 0.561

0.999 0.581 0.577 0.520

(e) Momentum (mAP on FIVR-5K)

Similarity Measure DSVR CSVR ISVR

cosine 0.609 0.617 0.578
chamfer 0.844 0.834 0.763
symm. chamfer 0.763 0.766 0.711
chamfer+comparator 0.726 0.735 0.701

(f) Similarity Measure (mAP on FIVR-5K)

Table 1: Ablations on FIVR about: (a): Temporal context aggregation methods; (b): Frame feature representations; (c):
Loss functions for contrastive learning (γ = 1/τ ); (d) Size of the memory bank; (e) Momentum parameter of the queue of
MoCo [17], degenerate to memory bank when set to 0; (f) Similarity measures (video-level and frame-level), comparator:
the comparator network used in ViSiLv [31], with original parameters retained.

50 [18]. PCA trained on 997,090 randomly sampled frame-
level descriptors from VCDB is applied to both iMAC and
L3-iRMAC features to perform whitening and reduce its di-
mension from 3840 to 1024. Finally, `2-normalization is
applied.

For the Transformer model, it is implemented with one
single layer, eight attention heads, dropout rate set to 0.5,
and the dimension of the feed-forward layer set to 2048.

During training, all videos are padded to 64 frames (if
longer, a random segment with a length of 64 is extracted),
and the full video is used in the evaluation stage. Adam [29]
is adopted as the optimizer, with the initial learning rate set
to 10−5, and cosine annealing learning rate scheduler [37] is
used. The model is trained with batch size 64 for 40 epochs,
and 16× 64 negative samples sampled from the distractors
are sent to the memory bank each batch, with a single device
with four Tesla-V100-SXM2-32GB GPUs, the size of the
memory bank is equal to 4096. The code is implemented
with PyTorch [41], and distributed training is implemented
with Horovod [47].

4.2. Ablation Study

Models for Temporal Context Aggregation. In Ta-
ble 1a, we compare the Transformer with prior tempo-
ral context aggregation approaches, i.e., NetVLAD [1],
LSTM [20] and GRU [8]. All models are trained on VCDB
dataset with iMAC feature and evaluated on all three tasks
of FIVR-5K, and dot product is used for similarity cal-
culation for both train and evaluation. The classic recur-
rent models (LSTM, GRU) do not show advantage against
NetVLAD. However, with the help of self-attention mecha-

nism, the Transformer model demonstrate excellent perfor-
mance gain in almost all tasks, indicating its strong ability
of long-term temporal dependency modeling.

Frame Feature Representation. We evaluate the iMAC
and L3-iRMAC feature on the FIVR-200K dataset with co-
sine similarity, as shown in Table 1b. With more local spa-
tial information leveraged, L3-iRMAC show consistent im-
provement against iMAC.

Loss function for contrastive learning. We present the
comparison of loss functions for contrastive learning in Ta-
ble 1c. The InfoNCE loss show notable inferiority com-
pared with Circle with default parameters τ = 0.07, γ =
256,m = 0.25. By adjusting the sensitive temperature pa-
rameter τ (set to 1/256, equivalent with γ = 256 in Circle
loss), it still shows around 0.5% less mAP.

Size of the Memory Bank. In Table 1d, we present the
comparison of different sizes of the memory bank. It is ob-
served that a larger memory bank convey consistent per-
formance gain, indicating the efficiency of utilizing large
quantities of negative samples. Besides, we compare our
approach against the commonly used triplet based approach
with hard negative mining [33] (without bank). The train-
ing process of the triplet-based scheme is extremely time-
consuming (5 epochs, 5 hours on 32 GPUs), yet still show
around 10% lower mAP compared with the baseline (40
epochs, 15 minutes on 4 GPUs), indicating that compared
with learning from hard negatives, to utilize a large num-
ber of randomly sampled negative samples is not only more
efficient, but also more effective.

Momentum Parameter. In Table 1e, we present the ab-
lation on momentum parameter of the modified MoCo [17]-



like approach, where a large queue is maintained to store the
negative samples and the weight of the model is updated in a
moving averaged manner. We experimented with different
momentum ranging from 0.1 to 0.999 (with queue length
set to 65536), but none of them show better performance
than the baseline approach as reported in Table 1d, we argue
that the momentum mechanism is a compromise for larger
memory. as the memory bank is big enough in our case, the
momentum mechanism is not needed.

Similarity Measure. We evaluate the video-level fea-
tures with cosine similarity, and frame-level features fol-
lowing the setting of ViSiL [31], i.e., chamfer similarity,
symmetric chamfer similarity, and chamfer similarity with
similarity comparator (the weights are kept as provided by
the authors). Table 1f presents the results on FIVR-5K
dataset. Interestingly, the frame-level similarity calculation
approach outperforms the video-level approach by a large
margin, indicating that frame-level comparison is important
for fine-grained similarity calculation between videos. Be-
sides, the comparator network does not show as good re-
sults as reported, we argue that this may be due to the bias
between features.

Next, we only consider the Transformer model trained
with L3-iRMAC feature and Circle loss in the following ex-
periments, denoted as TCA (Temporal Context Encoding
for Video Retrieval). With different similarity measures,
all four approaches are denoted as TCAc (cosine), TCAf

(chamfer), TCAsym (symmetric-chamfer), TCAv (video
comparator) for simplicity.

4.3. Comparison Against State-of-the-art

Near-duplicate Video Retrieval. We first compare TCA
against state-of-the-art methods on several versions of
CC WEB VIDEO [61]. The benchmark approaches are
Deep Metric Learning (DML) [33], the Circulant Temporal
Encoding (CTE) [45], and Fine-grained Spatio-Temporal
Video Similarity Learning (ViSiL), we report the best re-
sults of the original paper. As listed in Table 2, we report
state-of-the-art results on all tasks with video-level features,
and competitive results against ViSiLv with refined frame-
level features. To emphasize again, our target is to learn
a good video representation, and the similarity calculation
stage is expected to be as simple and efficient as possible,
therefore, it is fairer to compare TCAf with ViSiLf , as they
hold akin similarity calculation approach.
Fine-grained Incident Video Retrieval. We evaluate TCA
against state-of-the-art methods on FIVR-200K [30]. We
report the best results reported in the original paper of
DML [33], Hashing Codes (HC) [52], ViSiL [31], and their
re-implemented DP [9] and TN [54]. As shown in Table 3,
the proposed method shows a clear performance advan-
tage over state-of-the-art methods with video-level features
(TCAc), and deliver competitive results with frame-level

Method
CC WEB VIDEO

cc web cc web* cc webc cc webc*

Video- DML [33] 0.971 0.941 0.979 0.959
level TCAc 0.973 0.947 0.983 0.965

CTE [45] 0.996 - - -
ViSiLf [31] 0.984 0.969 0.993 0.987

Frame- ViSiLsym [31] 0.982 0.969 0.991 0.988
level ViSiLv [31] 0.985 0.971 0.996 0.993

TCAf 0.983 0.969 0.994 0.990
TCAsym 0.982 0.962 0.992 0.981

Table 2: mAP on 4 versions of CC WEB VIDEO. Fol-
lowing the setting in ViSiL [31], (*) denotes evaluation on
the entire dataset, and subscript c denotes using the cleaned
version of the annotations.

features (TCAf ). Compared with ViSiLf , we show a clear
performance advantage even with a more compact frame-
level feature and simpler frame-frame similarity measure.

A more comprehensive comparison on performance is
given in Fig. 2. The proposed approach achieves the best
trade-off between performance and efficiency with both
video-level and frame-level features against state-of-the-art
methods. When compared with ViSiLv , we show compet-
itive results with about 22x faster inference time. Inter-
estingly, our method slightly outperforms ViSiLv in ISVR
task, indicating that by conducting temporal context aggre-
gation, our model might show an advantage in extracting
semantic information.

Method
FIVR-200K

EVVE
DSVR CSVR ISVR

DML [33] 0.398 0.378 0.309 -
Video- HC [52] 0.265 0.247 0.193 -
level LAMV+QE [4] - - - 0.587

TCAc 0.570 0.553 0.473 0.598

DP [9] 0.775 0.740 0.632 -
TN [54] 0.724 0.699 0.589 -
ViSiLf [31] 0.843 0.797 0.660 0.597

Frame- ViSiLsym [31] 0.833 0.792 0.654 0.616
level ViSiLv [31] 0.892 0.841 0.702 0.623

TCAf 0.877 0.830 0.703 0.603
TCAsym 0.728 0.698 0.592 0.630

Table 3: mAP on FIVR-200K and EVVE. The proposed
approach achieves the best trade-off between performance
and efficiency with both video-level and frame-level fea-
tures against state-of-the-art methods.

Event Video Retrieval. For EVR, we compare TCA with
Learning to Align and Match Videos (LAMV) [4] with



Figure 5: Visualization of average attention weight (response) of example videos in FIVR. The weights are normalized
and interpolated for better visualization, and darker color indicates higher average response of the corresponding frame. Each
case tends to focus on salient and informative frames: video #1 focuses on key segments about the fire; video #2 has a higher
focus on the explosion segment; and video #3 selectively ignores the meaningless ending.

(a) DML [33] (b) Ours (TCAc)

Figure 6: Visualization of video-level features on a sub-
set of FIVR-5K with t-SNE. Each color represents samples
corresponding to one single query, and distractors are col-
ored with faded gray. Both our method and DML are trained
on VCDB [25] dataset. (Best viewed in color)

Average Query Expansion (AQE) [12] and ViSiL [31] on
EVVE [45]. We report the results of LAMV from the orig-
inal paper, and the re-evaluated ViSiL (the reported results
are evaluated on incomplete data). As shown in Table 3,
TCAsym achieves the best result. Surprisingly, our video-
level feature version TCAc also report notable results, this
may indicate that the temporal information and fine-grained
spatial information are not necessary for event video re-
trieval task.

4.4. Qualitative Results

We demonstrate the distribution of video-level features
on a randomly sampled subset of FIVR-5K with t-SNE [39]

in Fig. 6. Compared with DML, the clusters formed by rel-
evant videos in the refined feature space obtained by our ap-
proach are more compact, and the distractors are better sep-
arated; To better understand the effect of the self-attention
mechanism, we visualize the average attention weight (re-
sponse) of three example videos in Fig. 5. The self-attention
mechanism helps expand the vision of the model from sep-
arate frames or clips to almost the whole video, and con-
veys better modeling of long-range semantic dependencies
within the video. As a result, informative frames describ-
ing key moments of the event get higher response, and the
redundant frames are suppressed.

5. Conclusion

In this paper, we present TCA, a video representation
learning network that incorporates temporal-information
between frame-level features using self-attention mecha-
nism to help model long-range semantic dependencies for
video retrieval. To train it on video retrieval datasets, we
propose a supervised contrastive learning method. With the
help of a shared memory bank, large quantities of nega-
tive samples are utilized efficiently with no need for manual
hard-negative sampling. Furthermore, by conducting gra-
dient analysis, we show that our proposed method has the
property of automatic hard-negative mining which could
greatly improve the final model performance. Extensive
experiments are conducted on multi video retrieval tasks,
and the proposed method achieves the best trade-off be-
tween performance and efficiency with both video-level and
frame-level features against state-of-the-art methods.
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and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[9] Chien-Li Chou, Hua-Tsung Chen, and Suh-Yin Lee. Pattern-
based near-duplicate video retrieval and localization on web-
scale videos. IEEE Transactions on Multimedia, 17(3):382–
395, 2015.

[10] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta
Willamowski, and Cédric Bray. Visual categorization with
bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV, volume 1, pages 1–2. Prague, 2004.

[11] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2625–2634, 2015.
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