

Novel Visual Category Discovery with Dual Ranking Statistics and Mutual Knowledge Distillation

Bingchen Zhao¹ and Kai Han^{2,3,4}

¹Tongji University ²The University of Hong Kong ³Google Research ⁴University of Bristol

Problem definition: novel category discovery

• Discover/cluster **novel** categories in an unlabelled image collection

unlabelled image collection

Problem definition: novel category discovery

- Discover/cluster **novel** categories in an unlabelled image collection
- Using knowledge learned from related labelled categories.

novel categories

Pipeline

AutoNovel: Automatically Discovering and Learning Novel Visual Categories, TPAMI 2021
Neighborhood Contrastive Learning for Novel Class Discovery, CVPR 2021

Pipeline

AutoNovel: Automatically Discovering and Learning Novel Visual Categories, TPAMI 2021
Neighborhood Contrastive Learning for Novel Class Discovery, CVPR 2021

- Dual ranking statistics:
 - Global comparison to have a better *recall*.
 - Local part comparison to have a better *precision*. [1]
- Mutual knowledge distillation: allow *information exchange* between local and global.

- Dual ranking statistics:
 - Global comparison to have a better *recall*.

- Dual ranking statistics:
 - Global comparison to have a better *recall*.
 - Local part comparison to have a better *precision*. [1]

- Dual ranking statistics:
 - Global comparison to have a better *recall*.
 - Local part comparison to have a better *precision*. [1]
- Mutual knowledge distillation: allow *information exchange* between local and global.

- Dual ranking statistics:
 - Global comparison to have a better *recall*.

Global branch follows AutoNovel[1].

[1] AutoNovel: Automatically Discovering and Learning Novel Visual Categories, TPAMI 2021

Global branch follows AutoNovel[1].

• Represent input as a single feature vector (use avgpool, AVG).

Global branch follows AutoNovel[1].

- Represent input as a single feature vector (use avgpool, AVG).
- Obtain pair-wise pseudo label using Ranking Statistics (RS).

$$s_{ij} = \mathbf{RS}(z_i, z_j) = \mathbb{1} \{ \operatorname{top}_k(z_i) = \operatorname{top}_k(z_j) \}$$

Global branch follows AutoNovel[1].

- Represent input as a single feature vector (use avgpool, AVG).
- Obtain pair-wise pseudo label using Ranking Statistics (RS).
- Train the network with binary cross-entropy loss (BCE).

- Dual ranking statistics:
 - Global comparison to have a better *recall*.
 - Local part comparison to have a better *precision*. [1]

• Leverage the part dictionary to fuse local information on the feature map before avgpool.

- Leverage the part dictionary to fuse local information on the feature map before avgpool.
- Generate pair-wise pseudo labels using RS on the fused vectors.

- Leverage the part dictionary to fuse local information on the feature map before avgpool.
- Generate pair-wise pseudo labels using RS on the fused vectors.
- Train the network with binary cross-entropy loss.

Generating more restrict pseudo-labels by comparing local parts.

If one vector can contain all local informations, we can still use RS.

- Maintain a dictionary of local features
- Update it using local features of each new batches of image
- Update in a FIFO manner.

- Maintain a dictionary of local features
- Update it using local features of each new batches of image
- Update in a FIFO manner.

• Compare each part with the dictionary

- Compare each part with the dictionary
- Get one similarity vector for each parts

Part Dictionary

- Compare each part with the dictionary
- Get one similarity vector for each parts

- Compare each part with the dictionary
- Get one similarity vector for each parts

Part Dictionary $\mathcal{V} = \{v_1, v_2, ..., v_e\}$

- Compare each part with the dictionary
- Get one similarity vector for each parts
- Fused all vectors together use avgpool

Part Dictionary $\mathcal{V} = \{v_1, v_2, ..., v_e\}$

- Do the local information fusion for each image.
- Generate pair-wise pseudo label using RS on the fused vectors.

- Dual ranking statistics:
 - Global comparison to have a better *recall*.
 - Local part comparison to have a better *precision*. [1]
- Mutual knowledge distillation: allow *information exchange* between local and global.

Different cluster assignment of the two classifier due to no labels

Cluster assignments	Global Classifier η_g^u	Local Classifier η_p^u
(, "brid")	Cluster 1	Cluster 0
(, "dog")	Cluster 2	Cluster 1
(, "monkey")	Cluster 3	Cluster 2

So conventional mutual learning [1] is not applicable.

Global

• Maintain two FIFO feature banks for local and global branches.

- Maintain two FIFO feature banks for local and global branches.
- Calculate the similarity score distribution over the banks.

- Maintain two FIFO feature banks for local and global branches.
- Calculate the similarity score distribution over the banks.
- Perform mutual learning on the score distributions.

Overall framework

• Dual ranking statistics:

- Global comparison to have a better *recall*.
- Local part comparison to have a better *precision*.
- Mutual knowledge distillation: allow *information exchange* between local and global.

Experiments

Metric: **clustering accuracy** for all the novel classes.

Datasets: generic image classification benchmark + fine-grained classification benchmark.

Table 1: Data s	plits in the	experiments.		"tiger cat"	"pillow"	"whistle"
	labelled	unlabelled	Imagenet	000		
CIFAR-10	5	5	classes			
CIFAR-100	80	20				
ImageNet-1K	882	$\{30, 30, 30\}$				
ImageNet-100	70	30		"Mocking bird"	"House sparrow"	"Black tern"
CUB-200	160	40		1		K
Stanford-Cars	156	40	CUB-200		Star Star	
FGVC-aircraft	81	21	classes			
				the last		

Experiments: generic datasets

Table 2: Comparison of novel category discovery on generic classification datasets. For fair comparison, our method uses ResNet18 [22] backbone initialized with RotNet [16] following [17].

No	Method	CIFAR-10	CIFAR-100	ImageNet-1K
(1)	<i>k</i> -means [33]	$72.5 {\pm} 0.0\%$	56.3±1.7%	71.9%
(2)	KCL [24]	$66.5 \pm 3.9\%$	$14.3 \pm 1.3\%$	73.8%
(3)	MCL [25]	$64.2 {\pm} 0.1\%$	$21.3 \pm 3.4\%$	74.4%
(4)	DTC [19]	$87.5 {\pm} 0.3\%$	$56.7 \pm 1.2\%$	78.3%
(5)	RankStat [17]	$90.4{\pm}0.5\%$	$73.2{\pm}2.1\%$	82.5%
(6)	Ours	91.6±0.6%	75.3±2.3%	88.9%

Experiments: fine-grained datasets

Table 3: **Comparison of novel category discovery on fine-grained classification datasets.** "Ours w/o global" means our proposed method without global branch and mutual distillation.

No	Method	CUB-200	Stanford-Cars	FGVC-Aircraft
(1)	DTC [19]	$33.6\pm0.7\%$	$46.5\pm2.4\%$	$58.7 \pm 1.2\%$
(2)	RankStat [17]	$39.5\pm1.7\%$	$53.8\pm2.0\%$	$66.3\pm0.7\%$
(3)	Ours w/o global	$43.1\pm2.3\%$	$56.8\pm2.3\%$	$67.3 \pm 1.0\%$
(4)	Ours full	$\textbf{47.8} \pm \textbf{2.4\%}$	$61.9 \pm 2.5\%$	$\textbf{70.4} \pm \textbf{0.9\%}$

Experiments: ablation study

Table 4: Effectiveness of different components of our method. "MSE" means MSE consistency loss; "CE" means cross-entropy loss for training on labelled data; "BCE" means binary cross-entropy loss for training both global and local branches on unlabeled data; "sKLD" means the sKLD loss for mutual distillation between the two branches; "Self-sup." means self-supervised pre-training.

	CUB-200	Stanford-Cars	FGVC-Aircraft	ImageNet-100
Ours w/o BCE	$2.2\pm1.3\%$	$3.1\pm0.4\%$	$5.1\pm0.4\%$	$3.0\pm0.3\%$
Ours w/o sKLD	$39.8 \pm 1.8\%$	$50.6\pm2.1\%$	$60.8\pm1.5\%$	$58.2 \pm 1.2\%$
Ours w/o CE	$41.2\pm2.4\%$	$52.4\pm4.3\%$	$60.2\pm2.7\%$	$59.1\pm2.7\%$
Ours w/o MSE	$37.9\pm4.5\%$	$50.6\pm6.2\%$	$58.9\pm5.7\%$	$57.2\pm3.6\%$
Ours w/o Self-sup.	$44.3\pm3.5\%$	$58.2 \pm 1.8\%$	$67.4 \pm 1.3\%$	$65.3\pm1.3\%$
Ours full	$\textbf{47.8} \pm \textbf{2.4\%}$	$61.9 \pm \mathbf{2.5\%}$	$\textbf{70.4} \pm \textbf{0.9\%}$	$\textbf{69.4} \pm \textbf{2.1\%}$

Experiments

Top row: ImageNet-100 Bottom row: Stanford Cars

NEURAL INFORMATION PROCESSING SYSTEMS

Summary

- We tackles the task of novel category discovery.
- A dual ranking statistics framework is proposed.
 - The local branch focuses on local comparison
 - The global branch focuses on global information
- A mutual learning scheme is proposed to allow information exchange between the two branches.
- State-of-the-art results on both generic and fine-grained benchmarks.

Thanks for listening!

https://github.com/DTennant/dual-rank-ncd

