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A. Appendix
The appendix is composed of five parts. In Sec. A.1, we

discuss the correlation between mutual information maxi-
mization and the Principal Components Analysis (PCA). In
Sec. A.2, we elaborate the method for estimating mutual
information, i.e., MINE [1]. In Sec. A.3, we detail imple-
mentation details of all experiments in the manuscript. In
Sec. A.4, we provide ablation studies on key components of
CTC. In Sec. A.5, we provide a pseudo code of CTC.

A.1. Mutual Information and PCA

PCA is a linear dimensionality reduction method which
finds the linear projection(s) of the data that has the
maximum variance. Specifically, given a dataset D =
{x1, . . . , xn} where xn ∈ RD with an assumption that the
data is zero mean, 1

N

∑
i xi = 0 and P (x) is Gaussian. Solv-

ing for the linear projection y = w⊤x with PCA is solving
for the following equation:

w∗ = argmax
w

var(y),

where var(·) is the variance function. Increasing the norm
of w increases the variance of y, so we limited the norm of
w to be a unit, i.e. ∥w∥ = 1.

Consider we are interested in finding another linear pro-
jection ŷ = ŵ⊤x that has the maximum mutual information
I(x; ŷ). We can have:

I(x; ŷ) = H(ŷ)−H(ŷ|x) = H(ŷ)

So the goal is to maximize the entropy of H(ŷ), and because
x is a zero mean gaussian, the linear transformation of x is
still gaussian. Then, we have:

H(ŷ) = −
∫

p(ŷ) log p(ŷ)dŷ =
1

2
ln |Σ|+ D

2
(1 + ln 2π),

where Σ is the covariance matrix. Therefore, maximize the
entropy of H(ŷ) is maximize the variance of ŷ = ŵ⊤x
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which is solving for:

ŵ∗ = argmax
ŵ

var(ŷ) subject to ∥ŵ∥ = 1

So solving the PCA and solving for a linear projection that
have the maximum mutual information is the same.

A.2. Mutual Information Neural Estimation

Mutual Information Neural Estimation (MINE) [1] esti-
mates mutual information I(X;Y ) by training a classifier
to distinguish between samples from the joint, J, and the
product of marginals, M, of random variables X and Y .

We implement our estimator based on the open-source
code from GitHub 1. In our implementation, we adopt
a Multi-Layer Perceptron (MLP) composed of four fully-
connected layers with hidden dimension 1024, and ReLU is
used as the activation function. For calculating I(X;T ), the
input dimension is set to 3072 (32× 32× 3) + 512, which
is the summation of the resolution of tiny images and the di-
mension of representations. The batch size and learning rate
is set to 5K and 1e-4, respectively. For each model, we train
the MLP for 10K steps. For calculating I(T ;Y ), the input
dimension is 512 + C, which represents the summation of
the dimention of representations and the number of classes
in the dataset. The batch size and learning rate is set to 5K
and 1e-5, respectively. For each model, we train the MLP
for 20K steps. The Adam [?] optimizer is used.

A.3. Implementation Details

In Sec. 3 of the manuscript, we develop the baseline
used for temporal analyses .

Sec. 3.1: Training on CIFAR-100. We optimize a
ResNet18 [6] on the source dataset CIFAR-100 [7], with
the SGD optimizer and a batch size of 64. The initial learn-
ing rate is 5e-2, and the learning rate follows a cosine decay
scheduler. The weight decay is set to 5e-4 and the total
training epoch is set to 200.

1https://github.com/sungyubkim/MINE-Mutual-Information-Neural-
Estimation-
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Sec. 3.1: Transferring to STL-10 and CINIC-10. For
STL-10 [2] and CINIC-10 [4] datasets, we re-train a classi-
fier on top of the backbone learned on the source dataset at
each epoch. Specifically, for every evaluated model, we train
the classifier for 15K steps. We set the batch size to 512 and
the initial learning rate to 4e-1. The learning rate is decayed
by 0.1 at the 5K-th and 10K-th steps, respectively.

In Sec. 5.1 of the manuscript, we prove our motivation
on CIFAR-100, and then conduct image classification tasks
on both CIFAR-100 and ImageNet [11].

Sec. 5.1: Benchmarking on CIFAR-100. We mainly follow
the baseline settings in Sec. A.3. Specifically, we set the
initial learning rate to 5e-2 and the batch size to 64. The
SGD optimizer and cosine learning rate scheduler are used.
Note that we optimizer the model for 300 epochs as the base-
line for fair comparisons with our CTC. As settings about
CTC, we optimize the first stage (information aggregation
stage) for 200 epochs and the second stage (information re-
vitalization stage) for 100 epochs. The initial learning rate
of the second stage is set to 5e-3 and also follows a cosine
scheduler. The α and β are set to 0.01 and 1.0, respectively.

Sec. 5.1: Benchmarking on ImageNet. For experiments
on the ImageNet dataset, we set the initial learning rate to
0.01 with a batch size of 256. We use the SGD optimizer
and the cosine learning rate scheduler. The model is trained
for a total of 200 epochs, where 120 epochs are for the first
stage and the last 80 epochs are for the second stage. The
parameters α and β are set to 0.2 and 1.0 respectively.

In Sec. 5.2 of the manuscript, we introduce the Au-
toAugment [3] and plug in our CTC for better transferability.

Sec. 5.2: Benchmarking on CIFAR-100. We set the initial
learning rate to 5e-2 and the batch size to 64. The SGD opti-
mizer and cosine learning rate scheduler are used. Note that
we optimizer the model for 300 epochs as the baseline for
fair comparisons with our CTC. As settings about CTC, we
optimize the first stage (information aggregation stage) for
200 epochs and the second stage (information revitalization
stage) for 100 epochs. The α and β are set to 0.01 and 1.0,
respectively.

Sec. 5.2: Benchmarking on ImageNet. The experiments
on ImageNet with AutoAugment are the same with Sec. 5.1.

In Sec. 5.3 of the manuscript, we transfer representa-
tions to various tasks, i.e., object detection on COCO [9] and
fine-grained visual categorization (FGVC) on CUB200 [13],
Aircraft [10], and iNaturalist-18 [12].

Sec. 5.3: Object detection on COCO. For the experiments
transferring the learned representation to object detection on
COCO, we use the train2017 split for training the model
and the val2017 split to test the finetuned model. We

adopted the Mask-RCNN [5] with FPN [8] as the architecture
for detection, and the model is trained with the 1× schedule
with a maximum of 180K iterations of training, the learning
rate is set to 0.02 and the batchsize is 16, step decay schedule
is used, the learning rate will be multiplied by 0.1 at 120K
and 160K iterations.

Sec. 5.3: FGVC on CUB200, Aircraft, and iNaturalist-18.
For transfer learning experiments on fine-grained classifi-
cation datasets, we finetune the pretrained model with 100
epochs, and the learning rate is set to 5e-3 with cosine decay,
and the batchsize is 64 for CUB-200 and Aircraft, and is 256
for iNaturalist-18.

A.4. Ablation Studies

We conduct ablation studies on the source dataset CIFAR-
100 and target dataset STL-10.

Ablation: effects of LIAS. To prove the effectiveness of
LIAS, we provide an ablation study on the loss function of the
information aggregation stage. Specifically, we optimize the
first stage with only the LCE and then fine-tune the second
stage with both LIRS and LCE. Classification results are as
followed:

method LIAS CIFAR-100 top-1 (%)
ResNet18+CTC(Ours) – 80.1
ResNet18+CTC(Ours) ✓ 80.1

It can be observed that the final classification accuracy is
not influenced. After the training, we transfer learned rep-
resentations to STL-10 [2]. Results are shown in Figure 1.
Without the LIAS, the information bank (at the of the first
stage) cannot provide a good transferability, which can re-
sult from the over-compression, and thus the second stage
achieves worse transferability. It proves the effectiveness of
LIAS on selecting a satisfactory information bank.
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Figure 1. Temporal transferring results on the STL-10 dataset. X
and Y axes represent the training process and classification accu-
racy, respectively. Red and blue lines represent training with and
without LIAS. It demonstrates that training without LIAS will lead
to worse transferability.

Ablation: effects of α. It is worth mentioning that our
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proposed CTC is a flexible method. In the manuscript, we
use α = 0.01 for achieving both better transferability and
discriminability. Besides, a small α ensures the final classi-
fication accuracies on CIFAR-100 and ImageNet are better
than the baseline in Table 1–4 of the manuscript.

In this part, by further finding a trade-off between dis-
criminability and transferability, we demonstrate that our
CTC can significantly improve transferability without dam-
aging discriminability. Specifically, in the first stage, we
assign a large weight α to the LIAS, and, unavoidably, the
gradient of LCE will be influenced, and the discriminabil-
ity can be damaged. However, larger α could contribute to
higher transferability and build a foundation for counteract-
ing over-compression in the second stage. In the following,
we first train the model with α 0.5 and then perform transfer-
ring tasks to show that our method can achieve outstanding
transferability by sacrificing marginal discriminability and
the final classification accuracy. The below table shows
classification accuracies on CIFAR-100:

method α CIFAR-100 top-1 (%)
ResNet18+CosLr – 79.3
ResNet18+CTC(Ours) 0.01 80.1
ResNet18+CTC(Ours) 0.5 79.4

It can be observed that increasing α to 0.5 would result in
a worse final classification accuracy than setting α to 0.01.
However, the result is still better than the baseline method.
Then, we visualize the temporal transferring results on STL-
10 in Figure 2. As illustrated, the transferability is greatly
improved by setting α to 0.5. It supports the effectiveness of
LIAS and further demonstrates the existence of a trade-off be-
tween discriminability and transferability. More importantly,
the potential of our method for achieving better transferabil-
ity is proven, and our method can flexibly adjust the trade-off
to achieve better discriminability or transferability.
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Figure 2. Temporal transferring results on the STL-10 dataset. X
and Y axes represent the training process and classification ac-
curacy, respectively. Red and blue lines represent training with
α = 0.01 and α = 0.5.

Ablation: effects of β. With α = 0.01, we adjust the value

of β and conduct experiments on CIFAR-100. Results are
shown in the following table:

method β CIFAR-100 top-1 (%)
ResNet18+CTC(Ours) 0.5 79.7
ResNet18+CTC(Ours) 1.0 80.1
ResNet18+CTC(Ours) 1.5 79.9

It can be observed that the model performs well with β rang-
ing from 0.5 to 1.5. Then, we visualize temporal transferring
results in Figure 3. As we can see, setting β = 1.0 yields
the best transferring results on STL-10. For the best results
of both image classification and transfer learning, we use
β = 1.0 in all experiments of the manuscript.

55

65

75

β: 1.0
β: 1.5
β: 0.5

Figure 3. Temporal transferring results on the STL-10 dataset. X
and Y axes represent the training process and classification accu-
racy, respectively. Red, yellow, and blue lines represent training
with β = 1.0, β = 1.5 and β = 0.5, respectively.

A.5. Pseudo Code of CTC

A PyTorch-Style pseudo code of the CTC method is given
in Alg 1.
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Algorithm 1 Pseudo code of CTC in a PyTorch-like style.

# net: the network
# memory: the memory bank for holding representations
# e1, e2: numbers of epochs for two stages
# extract: a function to extract representations
# sample: a function to sample representations from the memory bank
# alpha, beta: hyper-parameters

for _ in e1: # Information aggregation stage
for x in loader:

logits = net.forward(x)
t_1 = net.extract(x)
v_1 = memory.sample(x) # Sampling contrastive samples from the memory
loss_ias = ContrastiveLoss(t_1, v_1)# Calculating the IAS loss
loss_ce = CrossEntropyLoss(logits, labels)
loss = alpha * loss_ias + loss_ce
loss.backward()
update(net.param)
update(memory, t_1) # Updating memory bank

information_bank = net

for _ in e2: # Information revitalization stage
for x in loader:

logits = net.forward(x)
t_2 = net.extract(x)
t_1_hat = information_bank.extract(x).detach()
loss_irs = ContrastiveLoss(t_2, t_1_hat) # Calculating the IRS loss
loss_ce = CrossEntropyLoss(logits, labels)
loss = beta * loss_irs + loss_ce
loss.backward()
update(net.param)
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