
Characterizing Robotic and Organic Query in
SPARQL Search Sessions

Xinyue Zhang1, Meng Wang1,2 (B), Bingchen Zhao3, Ruyang Liu1,
Jingyuan Zhang1, and Han Yang4

1. Southeast University, Nanjing, China
2. Key Laboratory of Computer Network and Information Integration (Southeast

University), Ministry of Education, Nanjing, China
3. Tongji University, Shanghai, China
4. Peking University, Beijing, China

{zhangxy216,meng.wang}@seu.edu.cn

Abstract. SPARQL, as one of the most powerful query languages over
knowledge graphs, has gained significant popularity in recent years. A
large amount of SPARQL query logs have become available and provided
new research opportunities to discover user interests, understand query
intentions, and model search behaviors. However, a significant portion of
the queries to SPARQL endpoints on the Web are robotic queries that are
generated by automated scripts. Detecting and separating these robotic
queries from those organic ones issued by human users is crucial to deep
usage analysis of knowledge graphs. In light of this, in this paper, we pro-
pose a novel method to identify SPARQL queries based on session-level
query features. Specifically, we define and partition SPARQL queries into
different sessions. Then, we design an algorithm to detect loop patterns,
which is an important characteristic of robotic queries, in a given query
session. Finally, we employ a pipeline method that leverages loop pat-
tern features and query request frequency to distinguish the robotic and
organic SPARQL queries. Differing from other machine learning based
methods, the proposed method can identify the query types accurately
without labelled data. We conduct extensive experiments on six real-
world SPARQL query log datasets. The results demonstrate that our
approach can distinguish robotic and organic queries effectively and only
need 7.63 × 10−4 seconds on average to process a query.

Keywords: SPARQL · Session Search · Query Classification

1 Introduction

With the rapid development of Semantic Web technologies, more and more
data are published as knowledge graphs in Resource Description Framework
(RDF) [11] triple form (subject, predicate, object). SPARQL [9], as one of the
most widely used query languages for accessing knowledge graphs, has become
the de-facto standard in this context. Currently, there are approximately 1.5 ×
1011 RDF triples from different domains1 that can be explored by 557 SPARQL

1 http://linkeddata.org/

2 Xinyue Zhang et al.

endpoints on the Web2. As a result, numerous SPARQL query logs are gener-
ated every day and have recently become available for researchers to discover
user interests, understand query intentions and model search behaviors [15, 17].

Motivations: Conducting extensive analysis of massive SPARQL logs is
challenging. One of the main problems is that there is a significant portion
of queries to SPARQL endpoints that are robotic queries. Robotic queries are
usually generated and issued by automated scripts or programs for index size
inferring, data crawling, or malicious attacking, while organic queries imply the
real information need of human users. Raghuveer [15] pointed out that 90% of
queries in USEWOD dataset [3] are requested by less than 2% no-human users.
Similarly, in DBpedia3 SPARQL query log dataset, 90% queries are provided by
only 0.4% automated software programs. It indicates that robotic queries dom-
inate organic ones in terms of volume and query load. Therefore, it is crucial to
pre-process query logs by detecting and separating robotic queries from organic
queries before diving into deep analysis works.

Most of existing methods [4, 15] on distinguishing between robotic and or-
ganic query are mainly based on agent names recorded in SPARQL logs [4, 15]
and query request frequency [15]. However, each of them has disadvantages. For
agent names, it is simple and effective to select organic queries from trusted
agents, but the trusted agent list needs to be manually specified and is not al-
ways available. Following the specification of Apache’s log format4, agent names
will be recorded on 400 error and 501 error only. Besides, smart crawlers can fake
agent names by adding them to the request header. For query request frequency,
how to determine an appropriate threshold is annoying. Therefore, recognizing
the different types of queries only by the agent name or frequency is not enough.
Moreover, several machine learning based methods [10, 19] have been proposed
to detect robotic queries in conventional search engines. However, they rely on
user demography features and sufficient labelled training data, which are usually
missing in SPARQL search scenarios.

Solutions: Given the above observations, in this paper, we propose a frame-
work to classify robotic and organic queries by detecting features of robotic
queries in SPARQL session-level. Specifically, we organize sequences of queries as
sessions which are defined considering the time and semantic constraints. Then,
according to three types of loop patterns that distribute in robotics queries, i.e.,
single intra loop pattern, the sequence of intra loop pattern, and inter loop pat-
tern, we design algorithms to detect each pattern. Our loop detection algorithm
is a training-free process which focuses on detecting characteristic of robotic
queries and has high efficiency with a complexity of O(nlogn) where n presents
the session length. Finally, we implement a pipeline method that takes query
request frequency and loop pattern features into consideration to distinguish
robotic and organic queries. To guarantee the high precision for organic queries,
a rule has been specially set to relax the constraint of robotic queries, i.e., if

2 https://sparqles.ai.wu.ac.at/availability
3 https://wiki.dbpedia.org/
4 http://httpd.apache.org/docs/current/mod/mod_log_config.html

Characterizing Robotic and Organic Query in SPARQL Search Sessions 3

one session that comes from one user is detected with loop patterns, then all the
sessions of the same user will be classified into robotic queries. Moreover, our
method can provide the explanation for each identified query (i.e., filtered by
frequency, or the specific loop pattern).

Contributions: The contributions of this paper are summarized as follows:

– We propose an efficient and simple pipeline method in SPARQL session-level
to distinguish between organic and robotic queries.

– We design a new training-free algorithm that can accurately detect loop
patterns that is an important characteristic for robotic queries, with a com-
plexity of O(nlogn) where n is the session length.

– We conduct extensive experiments on six real-world SPARQL query log
datasets. The results indicate that our approach is effective and efficient.

Organization: The remainder of this paper is organized as follows. Sec 2
presents basic SPARQL query log analysis. The details of our method (including
preliminary, loop pattern detection algorithm, and query classifying method) are
described in Sec 3. In Sec 4, we show experiments on real-world SPARQL queries
to demonstrate the effectiveness and efficiency of our method. Sec 5 discusses
related work. Finally, conclusions are presented in Sec 6.

2 SPARQL Query Log Analysis

Before we design our query detection algorithm, we first collect real-world SPARQL
query logs and present basic analysis.

2.1 Datasets

We use data collected from six different SPARQL endpoints: affymetrix5, dbsnp6,
gendr7, goa8, linkedspl9, and linkedgeodata10. The first five datasets are a part
of Bio2Rdf [2] which is a bioinformatic RDF cloud. The linkedgeodata [20] makes
the information collected by the OpenStreetMap project [7] available as an RDF
knowledge graph. All these SPARQL logs have been modified into RDF format
like LSQ [18], which makes them easy to be analyze.

In our collected data, every SPARQL query and execution is identified by
an unique id. One query can have multiple executions. We recognize different
users by their encrypted IP address. The basic information about the datasets
in this paper can be found in Tab 1. Queries column indicates the number of

5 http://affymetrix.bio2rdf.org/sparql
6 http://dbsnp.bio2rdf.org/sparql
7 http://gendr.bio2rdf.org/sparql
8 http://goa.bio2rdf.org/sparql
9 http://linkedspl.bio2rdf.org/sparql

10 http://linkedgeodata.org/sparql

4 Xinyue Zhang et al.

Table 1: Statistics of SPARQL query logs.

Data Source queries executions users begin time end time

affymetrix 618,796/630,499 1,782,776/1,818,020 1,159 2013-05-05 2015-09-18
dbsnp 545,184/555,971 1,522,035/1,554,162 274 2014-05-23 2015-09-18
gendr 564,158/565,133 1,369,325/1,377,113 520 2014-01-16 2015-09-18
goa 630,934/638,570 2,345,460/2,377,718 1,190 2013-05-05 2015-09-18

linkedgeodata 651,251/667,856 1,586,660/1,607,821 26,211 2015-11-22 2016-11-20
linkedspl 436,292/436,394 756,806/757,010 107 2014-07-24 2015-09-18

queries without parse error and the number of all the queries. Executions column
presents executions without parse error and the number of all the executions.
We also list the number of users and the time interval of the data.

2.2 Preliminary Analysis

We perform preliminary analysis about query distributions over users and time
span, as well as query template repetitions.

Distribution of Queries Executed by Users: As mentioned above, many
prior works [18, 15] have noticed that most SPARQL queries are provided by
few no-human users, and we also find the similar phenomenon in our data. We
first group queries by users and then sort users by the number of queries they
execute. Then we calculate how many users contribute to 95% executions at
least. Results can be found in Tab 2. In terms of the number of executions, 95%
executions are contributed by very few users (less than 7%) in all the datasets,
and less than 0.5% in the sum of all datasets.

Table 2: 95% executions are contributed by α% users.

dataset affymetrix dbsnp gendr goa linkedspl linkedgeodata all

α 1.47 3.65 1.54 1.60 1.87 6.80 0.40

Table 3: The percentage(β%) of unique templates

dataset affymetrix dbsnp gendr goa linkedspl linkedgeodata all

β 0.25 0.28 0.16 0.20 0.67 0.19 0.28

Distributions of Queries, Users, and Time Span together: We associate
users with the number of queries they submit and the time span of these sub-
mitted queries for each user, as illustrated in Fig 1. In terms of the number of
users, most users execute 1 ∼ 80 queries within 1 hour.

Characterizing Robotic and Organic Query in SPARQL Search Sessions 5

x=1
1<x<=5

5<x<=10
10<x<=30

30<x<=50
50<x<=80

80<x<=100

100<x<=200

200<x<=500

500<x<=1000

1000<x<=5000
x>5000

number of submitted queries x for every user

100

101

102

103

104

nu
m

be
r o

f u
se

rs

8125
13872

3664
1791

461 555
214 292 209

82 105 91

t<=10minute
10minute<t<=30minute
30minute<t<=1hour
1hour<t<=3hour
3hour<t<=5hour
5hour<t<=9hour
9hour<t<=1day
1day<t<=1weeks
t>1weeks

Fig. 1: Distributions of the number of submitted queries x and time span t of
the submitted queries for every user. The X-axis indicates different intervals
about the number of submitted queries, Y-axis means how many users are in
this interval. Different colors in the bar mean different time span of these users.

Query Template Repetition: As mentioned by Raghuveer [15], robotic queries
tend to use fixed query templates. We extract the query template for every query
in our data. We match the extracted query templates to calculate the percent-
age of unique templates over all queries, which means that the lower the number
is, the more repetitions of templates are in queries. The query templates are
extracted by replacing IRI, variable and literal with IRI , VAR , LIT re-
spectively like [15]. We calculate the similarity between two templates based
on string edit distance by fuzzywuzzy11. The query template repetition results
of six datasets are reported in Tab 3. We find that the percentage of unique
templates behind queries is less than 0.7%. For all the data sets except linked-
geodata, the number of unique templates is about 0.3% of the number of all
queries. The results indicate that the large repetitive query templates exist in
real-world queries.

3 Our Method

In this section, we present the definition of SPARQL query session based on time
and semantic constraints, as well as descriptions of three loop patterns, which
are important features of robotic queries and characterized by the distribution of
query templates in a given SPARQL query session. Then, we design a loop pat-
tern detection algorithm to capture the loop features of robotic queries. Finally,
we implement a pipeline method that leverages query request frequency and loop
pattern features to solve the organic and robotic query identifying problem.

11 https://pypi.org/project/fuzzywuzzy/

6 Xinyue Zhang et al.

3.1 Preliminaries

Definition 1. Term(q): term set of one query. All variables and specific
terms (i.e. RDF IRIs) used in the query are included in the term set.

Definition 2. Session. Considering a sequence of queries q1, q2, q3 · · · qn12,
which is ordered by time and executed by one user. We define a SPARQL query
sequence as a session if it satisfies the following two constraints:

– If we use time(q) to represent the time when query q is executed, this se-
quence of queries satisfies time(qn)− time(q1) < time threshold.

– For any continuous query pair (qi, qi+1) in this sequence, it satisfies term(qi)∩
term(qi+1) 6= ∅.

In this paper, we set time threshold to 1 hour. The reason why we include
variables in the term set is that users usually do not change variable names
they use in a query. If two continuous queries executed by one user share one
variable, we can infer that two queries have some potential correlations and
should be included in the same session. Next, we introduce three types of loop
patterns in the SPARQL session-level.

Single Intra Loop Pattern: Robotic queries often come from a loop in auto-
mated scripts or programs trying to collect enough information to satisfy their
uses. In these sessions, the structure of queries remains the same, but variables,
literals or IRIs are changing. (1) In some cases, machines want to collect all
the information about one specified subject, then in queries, only predicates are
changing as shown in below Example1. (2) For cases in which machines want to
find out the same information shared by some subjects, the subjects are changing,
as shown in Example2. (3) If a machine wants to collect the subjects with certain
types or values, then only objects are changing (see Example3). (4) There are
also cases in which the numeric values in SPARQL constraint operators FILTER,
OFFSET and LIMIT and the string values in REGEX functions are changing.

Example1: predicate change

{ ?s <http://bio2rdf.org/affymetrix_vocabulary:x-flybase> ?o}

{ ?s <http://bio2rdf.org/affymetrix_vocabulary:x-omim> ?o }

Example2: subject change

{<http://linkedgeodata.org/triplify/node2957398896> rdfs:label ?label}

{<http://linkedgeodata.org/triplify/node1885439658> rdfs:label ?label}

Example3: object changing

{?item rdf:type <http://www.openlinksw.com/schemas/rdfs/TechArticle#this>}

{?item rdf:type <http://wordnet.okfn.gr/resource/synset-noun-2> }

12 We only consider queries without parse errors and merge the same queries in adjacent
positions. For instance, a sequence [0, 1, 1, 1, 2] (in which 0, 1, 2 means the query id)
can be processed to [0, 1, 2]

Characterizing Robotic and Organic Query in SPARQL Search Sessions 7

All the cases described above remain the structure of the original SPARQL
query, and change one or more variables, IRIs and literal values. This is to say,
the query templates behind queries in this kind of loop are the same. This is the
so-called single intra loop pattern. If we use 0 to represent the template index,
′+′ means appearing one or more times, then the single intra loop pattern can
be expressed by [0+].
Sequence of Intra Loop: In our dataset, excepting the single intra loop intro-
duced above, we also notice there are sequences of intra loops. This type of loop
pattern shows up when, for example, the machine gets one target attribute for all
the subjects, then queries for another attribute. If we use numbers to represent
template index, ′+′ means appearing one or more times, then this loop pattern
can be expressed by [0 + 1 + · · ·].
Inter Loop Pattern: Another type of loop pattern is inter loop pattern, which
is used, for instance, to query all the features for one subject, then change to
another subject. Using the same method as above, inter loop pattern can be
expressed by [(01 · · ·)+]. Notice 0,1 here can be a single query or a intra loop.

3.2 Loop Pattern Detection Algorithm

In this section, we introduce our loop pattern detection algorithm, as shown in
Fig 2. In a nutshell, the algorithm we implement contains the following steps:

– Step1: Generate templates, we organize the queries as sessions (Such
as QuerySeq in Fig 2) defined in Sec 3.1, and replace each query in the
original session with its corresponding template index to generate a sequence
of template index.

– Step2: Merge the same items in adjacent positions, we merge the
continuous same items and generate a sequence of template index without
repetitions in adjacent positions (i.e. TmpltSeqWoRep). An example of this
step is shown in Fig 2.

– Step3: Is it a single intra loop? , we detect a single intra loop pattern
which can be expressed as [0+]. Therefore, if TmpltSeqWoRep only contains
one template index, then this session has intra loop pattern.

– Step4: Is it a sequence of intra loop? , we detect the sequences of intra
loop which have the order like [0 + 1 + · · ·]. We recognize such pattern by
calculating the percentage of len(TmpltSeqWoRep) and len(QuerySeq) and
regard sessions with this value lower than thre1 as sessions with sequence of
intra loop patterns. We design this step because that, if merging the same
items in adjacent positions can let the length of the session shrink to lower
than a threshold, there must be so many repetitions in adjacent positions.
The set of thre1 is provided in Sec 3.2.

– Step5: Is it a inter loop, we detect inter loops which has the pattern like
[(01)+]. Details about this function can be found in Inter Loop Detection
section below.

If a session contains one of the patterns described above, then we think
queries of this session can be classified into robotic queries. All the thresholds

8 Xinyue Zhang et al.

Step4: 𝑰𝒔 𝒊𝒕 𝒂 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒐𝒇
𝒊𝒏𝒕𝒓𝒂 𝒍𝒐𝒐𝒑?

Yes

Return 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒐𝒇 𝒊𝒏𝒕𝒓𝒂 𝒍𝒐𝒐𝒑

Template ID:
001100111220012

0 0 1 1 0 0 1 1 1 2 2 0 0 1 2Template ID:

TmpltSeq
WoRep:

0 - 1 - 0 - 1 - - 2 - 0 - 1 2

Step3:
𝑰𝒔 𝒊𝒕 𝒂 𝒔𝒊𝒏𝒈𝒍𝒆 𝒊𝒏𝒕𝒓𝒂 𝒍𝒐𝒐𝒑?

Yes
Return
𝐬𝐢𝐧𝐠𝐥𝐞 𝒊𝒏𝒕𝒓𝒂 𝒍𝒐𝒐𝒑

𝒍𝒆𝒏 𝑻𝒎𝒑𝒍𝒕𝑺𝒆𝒒𝑾𝒐𝑹𝒆𝒑 == 𝟏?
No𝒍𝒆𝒏(𝑻𝒎𝒑𝒍𝒕𝑺𝒆𝒒𝑾𝒐𝑹𝒆𝒑)

𝒍𝒆𝒏(𝑸𝒖𝒆𝒓𝒚𝑺𝒆𝒒)
≤ 𝒕𝒉𝒓𝒆𝟏?

Yes
Return
𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒐𝒇 𝒊𝒏𝒕𝒓𝒂 𝒍𝒐𝒐𝒑

No

Return
𝒊𝒏𝒕𝒆𝒓 𝒍𝒐𝒐𝒑

𝒊𝒏𝒕𝒆𝒓 𝒍𝒐𝒐𝒑 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏

Yes

Return no
pattern exists

No

QuerySeq
q1~q15

Original
Session

Step1:
Generate templates

Step2:
Merge the same items in adjacent positions

Step5:
𝑰𝒔 𝒊𝒕 𝒂 𝒊𝒏𝒕𝒆𝒓 𝒍𝒐𝒐𝒑?

Fig. 2: Overview of loop pattern detection algorithm.

mentioned in Algorithms are determined by experiments in Thresholds Setting
section below.

Inter Loop Detection: As described in Sec 3.1, the inter loop pattern can
be expressed by [(01...)+]. We detect this pattern by calculating the maxi-
mum subsequence which loops over the entire session. We use a Queue to store
this subsequence. A detailed example is provided by Fig 3. Scanning the input
(TmpltSeqWoRep) from left to right, add the item that do not exist in Queue
into Queue (step1 ∼ 2 in Fig 3). For items that are already in Queue, the sub-
sequence beginning from specific item in TmpltSeqWoRep should be matched
against subsequence in Queue. The subsequence can match over the sequence in
Queue from the beginning (step3 ∼ 4 and step6 ∼ 8) or from the middle. Also,
Queue can be extended like step5. Notice that Fig 3 is only the first step of
Detect inter loop function. The percentage of len(Queue) and len(QuerySeq),
presents in what extent intra loop pattern exists. Therefore, if this value is lower
than thre2, then we think a inter loop pattern exists in this session.

Thresholds Setting: In order to find 2 thresholds mentioned in Sec 3.2, we ex-
tract 3, 000 sessions in all the data randomly to find different features in sessions
with different lengths. We use len ori, len1, len2 to indicate len(QuerySeq),
len(TmpltSeqWoRep), len(Queue) in the following sections. len ori, is just the
length of original session; len1 means the length of session after removing the
continuous same template index; len2 is the length of maximum subsequence
which appears in a session, corresponding to the length of Queue in Fig 3. We
consider three kinds of features:

– Distribution of len1/len ori in sessions with different lengths, which can
present the distribution of intra loop, both single intra loop and sequence
intra loop pattern.

Characterizing Robotic and Organic Query in SPARQL Search Sessions 9

0 1 0 1 2 0 1 2TmpltSeqWoRep:

TmpltIdxSeq: 001100111220012
Init:

Queue: empty

TmpltQueue: 0 1 0 1 2 0 1 2

0 1 0 1 2 0 1 2

1 0 1 2 0 1 2

0 1 2 0 1 2

1 2 0 1 2 2

1 2

0 1 2

2 0 1 20

0 1

0 1

0 1

0 1 2

0 1 2

0 1 2

0 1 2

0 not in Queue
append 0

1 not in Queue
append 1

0 in Queue
Match 0 in Queue

In Queue, next 0 -> 1
In TmpltQueue, next 0 -> 1
Match 1

In Queue, next 1 -> tail
In TmpltQueue, next 1-> 2
2 not in Queue, append 2

0 in Queue
Match 0 in Queue

In Queue, next 0 -> 1
In TmpltQueue, next 0 -> 1
Match 1

In Queue, next 1 -> 2
In TmpltQueue, next 1 -> 2
Match 2

Step1:

Step2:

Step3:

Step4:

Step5:

Step6:

Step7:

Step8:

Output: Queue-> 012

Queue TmpltQueue Queue
Tmplt
Queue

Fig. 3: An example of inter loop detection

0 5000 10000150002000025000
session length

0.0

0.2

0.4

0.6

0.8

1.0

le
n1

/le
n_

Or
i

(a) len1/len ori

0 10000 20000 30000 40000
session length

0.0

0.2

0.4

0.6

0.8

1.0

le
n2

/le
n_

Or
i

(b) len2/len ori

0 100 200 300 400
session length

0.0

0.2

0.4

0.6

0.8

1.0

le
n2

/le
n1

(c) len2/len1

Fig. 4: Distribution of len1/len ori, len2/len ori and len2/len1.

– Distribution of len2/len ori in sessions with different lengths, which can
present the distribution of intra loop and inter loop pattern.

– Distribution of len2/len1 in sessions with different lengths, which can present
the distribution of inter loop, because len2 is computed based on TmpltIdxWoRep.

The Distribution of three features can be seen in Fig 4. In terms of len1/len ori,
sessions with lengths more than 100 are almost 0, which indicates there are lots
of intra loops. On the contrary, in shorter sessions with lengths less than 100, dis-
tribution of len1/len ori is different. The turning point of len1/len ori in Fig 4a
is about 0.1, therefore, we set thre1 to 0.1. Using the same method, according
to Fig 4b, we set thre2 to 0.1.

Comparing three figures in Fig 4, we can conclude that most of the sessions
with lengths longer than 100 contain intra loop patterns. In sessions with lengths
of 100 ∼ 500, there are a few inter loop patterns existing.

Complexity: Considering the process in Fig 2, assuming that the length of
original session is n, step3 and step4 have the complexity of constant. The com-

10 Xinyue Zhang et al.

plexity of step2 is linear, and the complexity for step1 and step5 which contains
the operation of finding an item in an ordered list is O(nlogn). Therefore, the
complexity of our loop pattern detection algorithm is O(nlogn).

3.3 Robotic and Organic Query Classification Pipeline Method

We design a pipeline method to classify robotic and organic queries by leveraging
query request frequency and loop patterns, which contains the following steps:

1) Frequency Test: For a query sequence ordered by time and generated
by one user, we check the query request frequency first. For every query in this
sequence, we create a time window in 30 minutes and if the number of queries
in this window is more than 30, we infer the query request frequency of this
sequence is too high and all the queries generated by this user are detected as
robotic queries.

2) Session Generation: We organize query sequences as sessions following
the definition we introduce in Sec 3.1.

3) Loop Pattern Detection Algorithm: Using algorithm described in
Sec 3.2, we detect loop patterns based on SPARQL query sessions.

Considering the number of organic queries is very small, we think the recall
of robotic query classification is more important. Therefore, we set a rule: if one
of the sessions of one user can be detected as a loop pattern, all the queries of
the same user will be classified into robotic queries. Note that, the agent name
constraint can also be added into this pipeline before the Frequency Test. Usually,
some browser-related agent names are selected as a sign for organic queries.

4 Experiments

To scrutinize the effectiveness and efficiency of the proposed method, We con-
duct experiments on six real-world datasets. We first evaluate the loop pattern
detection algorithm and its average runtime. Then, we validate the effectiveness
of our pipeline method to classify robotic and organic queries, as well as the
efficiency for a query and a session.

4.1 Loop Pattern Detection

We detect three loop patterns mentioned in Sec 3.1 using our loop pattern de-
tection algorithm. Results shown in Fig 5 and Fig 6 indicate our algorithm can
recognize all the sessions with lengths more than 1,000 in 5/6 datasets and most
sessions with lengths of 80 ∼ 1, 000. For dbsnp, gendr and linkedspl, there are
loop patterns distributed in sessions with lengths of 50 ∼ 80.

Also, in different datasets, the distribution of different patterns is a little
different. The most common loop pattern in all the datasets is the single intra
loop pattern. The second common loop pattern is the sequence of intra loop
pattern, which appears in dbsnp in particular. Besides, in linkedgeodata, there
is a considerable number of inter loop patterns. Most sessions with lengths more

Characterizing Robotic and Organic Query in SPARQL Search Sessions 11

1<x<=5
5<x<=20

20<x<=50
50<x<=80

80<x<=1k
1k<x<=3k

x>3k

session length

100

101

102

103

104

nu
m

be
r o

f s
es

sio
ns

11905

1571
512

294

2525

136

29
no pattern
intra loop pattern
sequence of intra loop pattern
inter loop pattern

(a) affymetrix

1<x<=5
5<x<=20

20<x<=50
50<x<=80

80<x<=1k
1k<x<=3k

x>3k

session length

101

102

103

nu
m

be
r o

f s
es

sio
ns

1744

572
263

179

2549

134

47
no pattern
intra loop pattern
sequence of intra loop pattern
inter loop pattern

(b) dbsnp

1<x<=5
5<x<=20

20<x<=50
50<x<=80

80<x<=1k
1k<x<=3k

x>3k

session length

101

102

103

nu
m

be
r o

f s
es

sio
ns

2179

541
245 189

2596

158

29no pattern
intra loop pattern
sequence of intra loop pattern
inter loop pattern

(c) gendr

1<x<=5
5<x<=20

20<x<=50
50<x<=80

80<x<=1k
1k<x<=3k

x>3k

session length

101

102

103

104

nu
m

be
r o

f s
es

sio
ns

19460

6690

1413

459

2924

165

43
no pattern
intra loop pattern
sequence of intra loop pattern
inter loop pattern

(d) goa

Fig. 5: Loop pattern distribution in affymertrix, dbsnp, gendr and goa.

than 80 can be detected, which illustrates our algorithm can capture features
of robotic queries. For the efficiency, experiments on linkedspl dataset show our
algorithm can process a query in 2.37 × 10−4 seconds, and a session in 0.001
seconds on average.

4.2 Robotic and Organic Query Classification

Our pipeline method utilizes the query request frequency and loop patterns
to identify robotic and organic queries. The classification results are reported in
Tab 4. We also list the number of robotic queries filtered by different constraints.
Query request frequency can filter out the most robotic queries and our Loop
Pattern Detection Algorithm can filter out a considerable number of robotic
queries. Even though the number of queries filtered by loop pattern detection is
smaller than the number of queries filtered by frequency, it is still a fairly big
number considering the number of organic queries. Taking gendr as an example,
the overall number of organic queries is 1262, but the number of queries filter
by loop pattern is 1214, which will disturb analysis work if they are mixed up.

Furthermore, considering there is no ground truth in robotic and organic
query classification tasks, we visualize the distribution of queries requested to

12 Xinyue Zhang et al.

1<x<=5
5<x<=20

20<x<=50
50<x<=80

80<x<=1k
1k<x<=3k

x>3k

session length

100

101

102

103

104

nu
m

be
r o

f s
es

sio
ns

11675
3550

799
311 466

76 50

no pattern
intra loop pattern
sequence of intra loop pattern
inter loop pattern

(a) linkedgeodata

1<x<=5
5<x<=20

20<x<=50
50<x<=80

80<x<=1k
1k<x<=3k

x>3k

session length

101

102

103

nu
m

be
r o

f s
es

sio
ns

1932

610

95 96

2176

99

21
no pattern
intra loop pattern
sequence of intra loop pattern
inter loop pattern

(b) linkedspl

Fig. 6: Loop pattern distribution in linkedgeodata and linkedspl.

Table 4: Classification Results.

dataset
Robotic

Queries Count
Organic

Queries Count
Robotic Queries
Filtered By Loop

Robotic Queries
Filtered By Freq

affymetrix 990,684 7,659 1,108 989,576
dbsnp 1,191,001 2,146 55 1,190,946
gendr 981,549 1,262 1,214 980,335
goa 1,430,506 1,827 624 1,429,882
linkedspl 745,810 1,230 376 745,434
linkedgeodata 1,480,573 18,380 10,160 1,470,413

endpoints at different times within one day and use the difference of distribu-
tions in robotic and organic queries to evaluate the effectiveness of our methods.
Results can be seen in Fig 7 and Fig 8. We only show two canonical distributions
here. The rest datasets are similar to these two distributions. The distributions
in both linkedgeodata and gendr for organic queries follow a strong daily rhythm.
Like [4], with most activities happening during the European and American day
and evening. This indicates a direct human involvement. For robotic queries,
most of them are uniformly distributed. An interesting thing here is that, in
1 : 00 ∼ 3 : 00 in gendr, we check queries in this time interval and find most of
the queries are very likely to come from an automated script that examines the
availability of endpoint every day. These kinds of queries are hard to remove for
two reasons: 1) They do not have a high request frequency. 2) They do have di-
versity in the session-level. But we can notice their existence by visualization we
present here, and we can remove such queries manually. Besides, the experiment
shows that our pipeline method can process a query in 7.63× 10−4 seconds and
a query sequence from one user in 5.33 seconds on average.

5 Related Work

SPARQL Log Analysis: SPARQL log analysis can provide rich information
in many aspects. Many prior works [21, 1, 14, 8, 13] have focused on the analysis

Characterizing Robotic and Organic Query in SPARQL Search Sessions 13

0 5 10 15 20
time

0

200

400

600

800

1000

1200

nu
m

be
r o

f q
ue

rie
s

Organic queries distribution

0 5 10 15 20
time

0

20000

40000

60000

80000

100000

120000

140000

160000

nu
m

be
r o

f q
ue

rie
s

Robotic queries distribution

Fig. 7: Query Request Time (UTC) Distribution of the linkedgeodata.

0 5 10 15 20
time

0

50

100

150

200

250

300

350

nu
m

be
r o

f q
ue

rie
s

Organic queries distribution

0 5 10 15 20
time

0

20000

40000

60000

80000

100000

120000

nu
m

be
r o

f q
ue

rie
s

Robotic queries distribution

Fig. 8: Query Request Time (UTC) Distribution of gendr.

of SPARQL query logs. They analyze SPARQL queries from statistical features
(i.e. occurrences of triple patterns) and shape related features (i.e. occurrences
of conjunctive and non-conjunctive patterns). However, these works mainly anal-
yse SPARQL query in isolation. Features between queries have not been fully
analysed. Currently, similarity between queries in a query sequence which is
from the same user and ordered by time (in [15], this sequence is called as ses-
sion) has been noticed by [14, 5, 15]. The similarity feature has been utilized
in query augmentation based on the analysis of previous (historic) queries [12,
16, 23]. In [16], authors define session based on the definition of [15] but add a
1-hour time window constraint. Our work moves onward by adding a semantic
constraint on the definition of session. Raghuveer [15] introduce intra and inter
loop patterns which are characteristics of robotic queries from session viewpoint.
Then, they evaluate the prevalence of these patterns in USEWOD dataset [3]
by loop detection technique they design. However, the method they introduce
is quite simple and can not satisfy the need to distinguish between robotic and
organic queries. In light of this, we classify loop patterns more carefully and give
a specific definition of these patterns. Furthermore, according to the features of
each pattern, we design an algorithm to detect loop patterns, which can be used
in the robotic and organic query classification scenario.

14 Xinyue Zhang et al.

Robotic and Organic Query Classification: The need to distinguish be-
tween machines and humans in SPARQL search is recognized by [15, 17, 4]. Ri-
etveld et al . [17] find organic queries and robotic queries have very different
features. In [15], robotic queries are recognized by query request frequency and
the agent names. Bielefeldt et al . [4] are the first to introduce an idealised view
of organic and robotic queries. They separate wikidata [22] SPARQL query logs
into organic queries and robotic queries mainly by manually specified agent lists.
They have published this classified dataset. Based on this dataset, Bonifati et
al . [6] analyse different features of both queries. However, as we mentioned above,
distinguishing robotic and organic queries by agent names and query request fre-
quency has drawbacks. In this paper, we consider an important characteristic,
i.e., loop pattern, and design a pipeline method for robotic and organic queries
classification problem leveraging query request frequency and loop pattern. Ex-
periments on six real-world SPARQL query logs indicate that our method is
more effective and efficient.

6 Conclusion

In this paper, we propose a novel method to distinguish robotic and organic
queries based on SPARQL session-level query features. We first organize queries
as sessions. Then, we design an algorithm to detect loop patterns, which is
an important characteristic of robotic queries. Furthermore, we implement a
pipeline method to separate robotic queries from organic queries by leveraging
query request frequency and loop patterns. Our method does not require user
demography features and sufficient labelled training data. The effectiveness and
efficiency of our method has been validated by experiments on six real-world
SPARQL query log datasets.

Acknowledgement

This work was supported by National Science Foundation of China with Grant
Nos. 61906037 and U1736204; National Key Research and Development Pro-
gram of China with Grant Nos. 2018YFC0830201 and 2017YFB1002801; the
Fundamental Research Funds for the Central Universities.

References

1. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world sparql queries. arXiv preprint arXiv:1103.5043 (2011)

2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2rdf: to-
wards a mashup to build bioinformatics knowledge systems. Journal of Biomedical
Informatics 41(5), 706–716 (2008)

3. Berendt, B., Hollink, L., Hollink, V., Luczak-Rösch, M., Möller, K., Vallet, D.:
Usewod2011: 1st international workshop on usage analysis and the web of data.
In: The 20th International Conference on World wide web. pp. 305–306 (2011)

Characterizing Robotic and Organic Query in SPARQL Search Sessions 15

4. Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data access via sparql:
The case of wikidata. In: The 11th Workshop on Linked Data on the Web. pp.
1–10 (2018)

5. Bonifati, A., Martens, W., Timm, T.: An analytical study of large sparql query
logs. The VLDB Journal pp. 1–25 (2017)

6. Bonifati, A., Martens, W., Timm, T.: Navigating the maze of wikidata query logs.
In: The World Wide Web Conference. pp. 127–138 (2019)

7. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Computing 7(4), 12–18 (2008)

8. Han, X., Feng, Z., Zhang, X., Wang, X., Rao, G., Jiang, S.: On the statistical
analysis of practical sparql queries. In: The 19th International Workshop on Web
and Databases. pp. 1–6 (2016)

9. Harris, S., Seaborne, A., Prud’hommeaux, E.: Sparql 1.1 query language. W3C
recommendation 21(10), 778 (2013)

10. Kang, H., Wang, K., Soukal, D., Behr, F., Zheng, Z.: Large-scale bot detection for
search engines. In: The 19th International Conference on World Wide Web. pp.
501–510 (2010)

11. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (rdf): Con-
cepts and abstract syntax. w3c recommendation, feb. 2004 (2004)

12. Lorey, J., Naumann, F.: Detecting sparql query templates for data prefetching. In:
Extended Semantic Web Conference. pp. 124–139. Springer (2013)

13. Möller, K., Hausenblas, M., Cyganiak, R., Grimnes, G.A., Handschuh, S.: Learning
from linked open data usage: Patterns & metrics. In: The WebSci10: Extending
the Frontiers of Society On-Line. pp. 1–8 (2010)

14. Picalausa, F., Vansummeren, S.: What are real sparql queries like? In: The Inter-
national Workshop on Semantic Web Information Management. pp. 1–6 (2011)

15. Raghuveer, A.: Characterizing machine agent behavior through sparql query min-
ing. In: The International Workshop on Usage Analysis and the Web of Data.
pp. 1–8 (2012)

16. Rico, M., Touma, R., Queralt Calafat, A., Pérez, M.S.: Machine learning-based
query augmentation for sparql endpoints. In: The 14th International Conference
on Web Information Systems and Technologies. pp. 57–67 (2018)

17. Rietveld, L., Hoekstra, R., et al.: Man vs. machine: Differences in sparql queries. In:
The 4th USEWOD Workshop on Usage Analysis and the Web of of Data. pp. 1–7
(2014)

18. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.C.N.: Lsq: the linked
sparql queries dataset. In: International Semantic Web Conference. pp. 261–269.
Springer (2015)

19. Shakiba, T., Zarifzadeh, S., Derhami, V.: Spam query detection using stream clus-
tering. World Wide Web 21(2), 557–572 (2018)

20. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web
of spatial open data. Semantic Web 3(4), 333–354 (2012)

21. Stegemann, T., Ziegler, J.: Pattern-based analysis of sparql queries from the lsq
dataset. In: International Semantic Web Conference (Posters, Demos & Industry
Tracks). pp. 1–4 (2017)

22. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

23. Zhang, W.E., Sheng, Q.Z., Qin, Y., Yao, L., Shemshadi, A., Taylor, K.: Secf: im-
proving sparql querying performance with proactive fetching and caching. In: The
31st Annual ACM Symposium on Applied Computing. pp. 362–367 (2016)

